### министерство сельского хозяйства российской федерации

федеральное государственное бюджетное образовательное учреждение высшего образования

### «ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

### ИНСТИТУТ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ

УТВЕРЖДАЮ Декан факультета ветеринарной медицины

Д.М. Максимович

«14» мая 2020 г.

Кафедра Незаразных болезней

Рабочая программа дисциплины

### Б1.О.16 ВЕТЕРИНАРНАЯ РАДИОБИОЛОГИЯ

Специальность — 36.05.01 Ветеринария
Направленность программы — Диагностика, лечение и профилактика болезней животных
Уровень высшего образования — специалитет
Квалификация — ветеринарный врач

Форма обучения: заочная

Рабочая программа дисциплины «Ветеринарная радиобиология» составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования (ФГОС ВО), утвержденного Приказом Министерства образования и науки Российской Федерации 22.09.2017 г. № 974. Рабочая программа предназначена для подготовки специалиста по специальности 36.05.01 Ветеринария.

Настоящая рабочая программа дисциплины составлена в рамках основной профессиональной образовательной программы (ОПОП) и учитывает особенности обучения при инклюзивном образовании лиц с ограниченными возможностями здоровья (ОВЗ).

Составитель: кандидат ветеринарных наук, доцент Колобкова Н.М.

Рабочая программа обсуждена на заседании кафедры Незаразных болезней «14» мая 2020 г. (протокол № 10).

НАУЧНАЯ БИЗЛИОТЕКА

Зав. кафедрой Незаразных болезней, доктор ветеринарных наук, профессор

А. М. Гертман

Рабочая программа дисциплины одобрена методической комиссией факультета ветеринарной медицины

«14» мая 2020 г. (протокол № 9).

Председатель методической комиссии факультета ветеринарной медицины, кандидат ветеринарных наук, доцент

Н. А. Журавель

Директор Научной библиотеки

Slevegels

Е. Л. Лебедева

### СОДЕРЖАНИЕ

| 1. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми        |      |
|--------------------------------------------------------------------------------------|------|
| результатами освоения ОПОП                                                           | 4    |
| 1.1. Цели и задачи освоения дисциплины                                               | 4    |
| 1.2. Компетенции и индикаторы их достижений                                          | 4    |
| 2. Место дисциплины в структуре ОПОП                                                 | 4    |
| 3. Объём дисциплины и виды учебной работы                                            | 6    |
| 3.1. Распределение объема дисциплины по видам учебной работы                         | 6    |
| 3.2. Распределение учебного времени по разделам и темам                              | 6    |
| 4.2. Содержание лекций                                                               | 11   |
| 4.3. Содержание лабораторных занятий                                                 | 11   |
| 4.4. Содержание практических занятий                                                 | 11   |
| 4.5. Виды и содержание самостоятельной работы обучающихся                            |      |
| 4.5.1. Виды самостоятельной работы обучающихся                                       | 11   |
| 4.5.2. Содержание самостоятельной работы обучающихся                                 | 12   |
| 5. Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплин   | ie13 |
| 6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по     | )    |
| дисциплине                                                                           | 14   |
| 7. Основная и дополнительная учебная литература, необходимая для освоения дисциплины | ı14  |
| 8. Ресурсы информационно-телекоммуникационной сети «интернет», необходимые для       |      |
| освоения дисциплины                                                                  | 14   |
| 9. Методические указания для обучающихся по освоению дисциплины                      | 15   |
| 10. Информационные технологии, используемые при осуществлении образовательного       |      |
| процесса по дисциплине, включая перечень программного обеспечения и информационных   | ζ.   |
| справочных систем                                                                    | 15   |
| 11. Материально-техническая база, необходимая для осуществления образовательного     |      |
| процесса по дисциплине                                                               | 15   |
| Приложение. Фонд оценочных средств для текущего контроля успеваемости и проведения   |      |
|                                                                                      | 17   |
| Лист регистрации изменений                                                           | 49   |

# 1. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП

#### 1.1. Цели и задачи освоения дисциплины

Специалист по специальности 36.05.01 Ветеринария должен быть подготовлен к решению задач профессиональной деятельности следующих типов: врачебный, экспертноконтрольный.

**Цель дисциплины:** формирование теоретических знаний и практических умений, необходимых для выполнения задач ветеринарной службой по ликвидации радиоактивной загрязнённости объектов ветеринарного надзора; проведению комплекса организационных и специальных мероприятий при ведении животноводства в условиях радиоактивного загрязнения среды; рационального использования загрязнённой радионуклидами продукции растениеводства и животноводства; диагностике, профилактике и лечению последствий радиационного воздействия на организм животных в соответствии с формируемыми компетенциями.

#### Задачи дисциплины:

- изучение основополагающих законов явления радиоактивности и свойств радиоактивных излучений;
- изучение правил и основных принципов работы на радиометрическом и дозиметрическом оборудовании, предназначенном для штатной комплектации ветеринарных радиологических лабораторий;
- изучение основных закономерностей миграции наиболее опасных радионуклидов по пищевой цепочке, их токсикологической характеристики и особенностей накопления и выведения у разных видов с.-х. животных;
- изучение современных подходов к прогнозированию последствий масштабных радиоактивных загрязнений окружающей среды, организации ведения животноводства в этих условиях и проведения радиометрической и радиохимической экспертизы объектов ветеринарного надзора;
- изучение механизма биологического действия ионизирующих излучений на организм животных и биологические популяции при внешнем и внутреннем излучении, явления гормезиса;
- изучение течения лучевой болезни, формирования лучевых ожогов, нарушения нейроэндокринной регуляции и иммунологического контроля, бластомогенных, наследственных и других последствий облучения;
- изучение основных достижений и перспектив использования радиоактивных изотопов и радиационной технологии в народном хозяйстве;
- формирование навыков работы с радиоактивными источниками и в условиях радиоактивного загрязнения хозяйств.

### 1.2. Компетенции и индикаторы их достижений

УК-1. Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий

| Код и наименование индикатора достижения компетенции                  |        | Формируемые ЗУН                                                                                                                                                                                              |  |  |  |  |
|-----------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ИД-1.УК-1 Осуществляет поиск, критический анализ и синтез информации, | знания | Обучающийся должен знать: ветеринарную радиобиологию для осуществления поиска, критического анализа и синтеза информации, применения системного подхода для решения поставленных задач (Б1.О.16, УК-1 - 3.1) |  |  |  |  |
| применяет системный подход для решения                                | умения | Обучающийся должен уметь: осуществлять поиск, критический анализ и синтез информации по ветеринарной радиобиологии для применения системного подхода в решении поставленных задач                            |  |  |  |  |

| поставленных задач |        | (Б1.О.16, УК-1–У.1)                                                                                                                   |
|--------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------|
|                    |        |                                                                                                                                       |
|                    | навыки | Обучающийся должен владеть: способами поиска, критическим анализом и синтезом информации по ветеринарной радиобиологии для применения |
|                    |        | системного подхода в решении поставленных задач                                                                                       |
|                    |        | (Б1.О.16, УК-1–Н.1)                                                                                                                   |

ОПК-2. Способен интерпретировать и оценивать в профессиональной деятельности влияние на физиологическое состояние организма животных природных, социально-хозяйственных, генетических и экономических факторов

| Код и наименование    |        |                                                                    |  |  |  |  |
|-----------------------|--------|--------------------------------------------------------------------|--|--|--|--|
| индикатора            |        | Формируемые ЗУН                                                    |  |  |  |  |
| достижения            |        |                                                                    |  |  |  |  |
| компетенции           |        |                                                                    |  |  |  |  |
| ИД-1. ОПК-2           | знания | Обучающийся должен знать: характеристику ионизирующих излучений,   |  |  |  |  |
| Осуществляет          |        | токсикологию радиоактивных веществ для осуществления интерпретации |  |  |  |  |
| интерпретацию и       |        | и анализа действия различных факторов на физиологическое состояние |  |  |  |  |
| анализ действия       |        | организма животных в профессиональной деятельности                 |  |  |  |  |
| различных факторов на |        | (Б1.О.16, ОПК-2 - 3.1)                                             |  |  |  |  |
| физиологическое       | умения | Обучающийся должен уметь: осуществлять интерпретацию и анализ      |  |  |  |  |
| состояние организма   |        | действия ионизирующего излучения и радиоактивных веществ на        |  |  |  |  |
| в хинтовиж            |        | физиологическое состояние организма животных в профессиональной    |  |  |  |  |
| профессиональной      |        | деятельности (Б1.О.16, ОПК-2–У.1)                                  |  |  |  |  |
| деятельности          | навыки | Обучающийся должен владеть: навыками интерпретации и анализом      |  |  |  |  |
|                       |        | действия ионизирующего излучения и радиоактивных веществ на        |  |  |  |  |
|                       |        | физиологическое состояние организма животных в профессиональной    |  |  |  |  |
|                       |        | деятельности (Б1.О.16, ОПК-2–Н.1)                                  |  |  |  |  |

ОПК-3. Способен осуществлять и совершенствовать профессиональную деятельность в соответствии с нормативными правовыми актами в сфере агропромышленного комплекса

| Код и наименование |                 |                                                                   |  |  |
|--------------------|-----------------|-------------------------------------------------------------------|--|--|
| индикатора         | Формируемые ЗУН |                                                                   |  |  |
| достижения         |                 |                                                                   |  |  |
| компетенции        |                 |                                                                   |  |  |
| ИД-1. ОПК-3        | знания          | Обучающийся должен знать: нормы радиационной безопасности для     |  |  |
| Осуществляет и     |                 | осуществления поиска современной актуальной и достоверной         |  |  |
| совершенствует     |                 | информации о нормативных правовых актах в сфере агропромышленного |  |  |
| профессиональную   |                 | комплекса, совершенствования профессиональной деятельности в      |  |  |
| деятельность в     |                 | соответствии с ними (Б1.О.16, ОПК-3 - 3.1)                        |  |  |
| соответствии с     | умения          | Обучающийся должен уметь: осуществлять поиск современной          |  |  |
| нормативными       |                 | актуальной и достоверной информации о нормах радиационной         |  |  |
| правовыми актами в |                 | безопасности в нормативных правовых актах в сфере                 |  |  |
| сфере              |                 | агропромышленного комплекса для совершенствования                 |  |  |
| агропромышленного  |                 | профессиональной деятельности в соответствии с ними               |  |  |
| комплекса          |                 | (Б1.О.16, ОПК-3–У.1)                                              |  |  |
|                    | навыки          | Обучающийся должен владеть: навыками поиска современной           |  |  |
|                    |                 | актуальной и достоверной информации о нормах радиационной         |  |  |
|                    |                 | безопасности в нормативных правовых актах в сфере                 |  |  |
|                    |                 | агропромышленного комплекса для совершенствования                 |  |  |
|                    |                 | профессиональной деятельности в соответствии с ними               |  |  |
|                    |                 | (Б1.О.16, ОПК-3–Н.1)                                              |  |  |

### 2. Место дисциплины в структуре ОПОП

Дисциплина «Ветеринарная радиобиология» относится к обязательной части основной профессиональной образовательной программы специалитета.

### 3. Объём дисциплины и виды учебной работы

Объем дисциплины составляет 5 зачетных единиц (ЗЕТ), 180 академических часов (далее часов). Дисциплина изучается в 8 семестре.

### 3.1. Распределение объема дисциплины по видам учебной работы

| Вид учебной работы                      | Количество часов |
|-----------------------------------------|------------------|
| Контактная работа (всего)               | 12               |
| В том числе:                            |                  |
| Лекции (Л)                              | 6                |
| Практические занятия (ПЗ)               | 6                |
| Самостоятельная работа обучающихся (СР) | 164              |
| Контроль зачет с оценкой                | 4                |
| Итого                                   | 180              |

### 3.2. Распределение учебного времени по разделам и темам

|                                      |                                                                      |          | В      | гом чис | ле     | Д_       |
|--------------------------------------|----------------------------------------------------------------------|----------|--------|---------|--------|----------|
| <b>№</b><br>п/п                      | <b>Помумурования</b> порта то м тому                                 | Всего    | конта  | ктная   |        | контроль |
|                                      | Наименование раздела и темы                                          | часов    | pac    | бота    | CP     |          |
|                                      |                                                                      |          | Л      | ПЗ      |        | S        |
| 1                                    | 2                                                                    | 3        | 4      | 5       | 6      | 7        |
| Разде                                | ел 1. Основы радиационной безопасности, организация работы с радиоак | тивными  | вещест | вами в  | услови | ях       |
|                                      | радиоактивного загрязнения среды                                     |          |        |         |        |          |
| 1.1.                                 | Предмет и задачи радиобиологии. Этапы развития радиобиологии         | 5        | -      | -       | 5      | X        |
|                                      | Техника радиационной безопасности, средства и способы защиты при     |          |        |         |        |          |
| 1.2.                                 | работе с радиоактивными веществами, источниками ионизирующих         | 5        | _      | _       | 5      | X        |
| 1.2.                                 | излучений и в условиях ведения животноводства на радиоактивно        |          | _      | _       |        | Α .      |
|                                      | загрязнённых территориях                                             |          |        |         |        |          |
|                                      | Основные цели и задачи радиационной безопасности. Нормы              |          |        |         |        |          |
| 1.3.                                 | радиационной безопасности НРБ-99 и основные санитарные правила       | 5        |        |         | 5      |          |
| 1.3.                                 | и нормы (СанПиН). Радиоактивные отходы, их классификация,            | 3        | _      | _       | )      | X        |
|                                      | способы дезактивации и варианты утилизации                           |          |        |         |        |          |
|                                      | Раздел 2. Физические основы радиобиологии                            | [        |        |         |        |          |
|                                      | Элементы ядерной физики (строение атома, характеристика              |          |        |         |        |          |
| 2.1.                                 | элементарных частиц. Масса ядра атома, дефект массы, ядерные         | 3        | 2      | -       | 1      |          |
| $\begin{bmatrix} 2.1. \end{bmatrix}$ | силы, ионизация и возбуждение). Радиоактивность. Закон               |          | 3   2  |         | 1      | X        |
|                                      | радиоактивного распада. Единицы радиоактивности                      |          |        |         |        |          |
| 2.2.                                 | Типы ядерных превращений                                             | 5        | -      | -       | 5      |          |
| 2.3.                                 | Взаимодействие ионизирующих излучений с веществом                    | 5        | -      | -       | 5      |          |
| 2.4.                                 | Радиоактивность. Характеристика ионизирующих излучений               | 4        | -      | 2       | 2      | X        |
|                                      | Явление радиоактивности. Естественная и искусственная                |          |        |         |        |          |
| 2.5.                                 | радиоактивность. Взаимодействие корпускулярных и                     | 5        | -      | -       | 5      | X        |
|                                      | электромагнитных излучений с веществом                               |          |        |         |        |          |
|                                      | Раздел 3. Дозиметрия и радиометрия ионизирующих и                    | злучений | Í      |         |        |          |
|                                      | Дозиметрия ионизирующих излучений. Доза, виды доз, мощность          |          |        |         |        |          |
|                                      | дозы, единицы измерения. Расчёт доз внешнего и внутреннего           |          |        |         |        |          |
| 3.1.                                 | облучения человека и животных. Решение задач по дозиметрии.          | 4        |        | 2       | 2      | x        |
| 3.1.                                 | Приборы и методы дозиметрического контроля, их устройство и          | 4        | _      | 2       |        |          |
|                                      | порядок работы с основными типами дозиметров (индивидуального и      |          |        |         |        |          |
|                                      | общего пользования)                                                  |          |        |         |        |          |
|                                      | Методы обнаружения и регистрации ионизирующих излучений.             |          |        |         |        |          |
|                                      | Детекторы ионизирующих излучений, их устройство, принцип             |          |        |         |        |          |
| 3.2.                                 | работы. Счётная характеристика детекторов. Радиометрия. Методы и     | 4        | -      | 2       | 2      | X        |
|                                      | приборы, используемые для радиационной экспертизы объектов           |          |        |         |        |          |
|                                      | ветнадзора.                                                          |          |        |         |        |          |
|                                      | Изучение характера поглощения бета-излучения в веществе.             |          |        |         |        |          |
| 3.3.                                 | Определение слоя половинного ослабления. Расчёт толщины              | 5        | _      | -       | 5      | X        |
| 0.0.                                 |                                                                      |          |        |         |        |          |

|            | •                                                                                                                                                                                                                                               |         |        |          |        |      |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|--------|------|
| 3.4.       | Градуировка радиометрических приборов с помощью эталонных источников. Приготовление эталонов из КСІ и определение толщины слоя препарата                                                                                                        | 5       | -      | -        | 5      | X    |
| 3.5.       | Относительный метод определения радиоактивности препаратов. Влияние условий радиометрии на скорость счёта препарата. Выбор времени счёта. Статистическая обработка результатов радиометрии                                                      | 5       | -      | -        | 5      | X    |
| 3.6.       | Вольтамперная характеристика газового разряда                                                                                                                                                                                                   | 5       | -      | -        | 5      | X    |
|            | Раздел 4. Лучевые поражения                                                                                                                                                                                                                     |         |        |          |        |      |
| 4.1        | Современные представления о механизме биологического действия                                                                                                                                                                                   | _       |        |          | -      |      |
| 4.1.       | излучений. Теории биологического действия                                                                                                                                                                                                       | 5       | -      | -        | 5      | X    |
| 4.2.       | Токсичность радионуклидов. Закономерности их метаболизма в организме животных. Источники и пути поступления. Распределение, накопление и выведение из организма                                                                                 | 5       | -      | -        | 5      | X    |
| 4.3.       | Острая лучевая болезнь и её формы, патогенез, клинические и патоморфологические изменения у разных видов животных. Диагностика, прогноз, лечение и профилактика острой лучевой болезни и её отдалённые последствия                              | 3       | 2      | -        | 1      | X    |
| 4.4.       | Лучевые ожоги (этиология, патогенез, клинические признаки и исход)                                                                                                                                                                              | 5       | -      | -        | 5      | X    |
| 4.5.       | Определение активности стронция-90 и цезия-137 в молоке, мясе и костях животных                                                                                                                                                                 | 5       | -      | -        | 5      | X    |
| 4.6.       | Клинико-гематологические и патоморфологические изменения у животных при лучевой болезни. Особенности лучевой болезни при внутреннем облучении                                                                                                   | 5       | -      | -        | 5      | X    |
| 4.7.       | Радиочувствительность, радиорезистентность. Восстановительные и компенсаторные процессы при облучении на молекулярном, клеточном уровнях и в целом в организме. Проблема действия малых доз ионизирующих излучений. Радиационный гормезис       | 5       | -      | -        | 5      | x    |
| 4.8.       | Радиотоксикологическая характеристика <sup>210</sup> Ро и <sup>239</sup> Ри. Методы ускорения выведения радионуклидов из организма                                                                                                              | 5       | -      | -        | 5      | X    |
| 4.9.       | Особенности течения лучевой болезни у различных видов сельскохозяйственных животных при внешнем облучении                                                                                                                                       | 5       | _      | _        | 5      | X    |
|            | Раздел 5. Основы радиоэкологии                                                                                                                                                                                                                  |         | 1      | 1        |        |      |
|            | Сельскохозяйственная радиоэкология, как составная часть                                                                                                                                                                                         |         | I      | I        |        | I    |
| 5.1.       | ветеринарной радиобиологии, её цель и задачи. Источники загрязнения окружающей среды. Физико-химическое состояние радионуклидов в воде, почве, кормах, органах и тканях животных                                                                | 5       | -      | -        | 5      | X    |
| 5.2.       | Системы и методы радиологического контроля объектов ветеринарного надзора. Оценка радиационной обстановки с помощью полевых радиометров СРП-68-01, ДП-5, ДКС-04, ДБГН-01, «Эксперт»                                                             | 5       | -      | _        | 5      | X    |
| 5.3.       | Правила отбора и подготовки проб для радиационной экспертизы                                                                                                                                                                                    | 5       | -      | -        | 5      | X    |
|            | Общая характеристика экспрессных методов определения                                                                                                                                                                                            |         |        |          |        |      |
| 5.4.       | радиоактивности объектов ветнадзора. Определение ОА и УА гамма-<br>излучающих нуклидов в кормах и продукции животноводства                                                                                                                      | 5       | -      | -        | 5      | X    |
| 5.5.       | Пути поступления радионуклидов во внешнюю среду. Поступление радиоактивных продуктов деления в организм животных и продукцию                                                                                                                    | 5       | -      | -        | 5      | X    |
| 5.6.       | Прогнозирование и нормирование поступления радионуклидов в корма, организм и продукцию животноводства. Предельно допустимые концентрации (уровни) радионуклидов в кормах для продуктивных животных, в продуктах и сырье животного происхождения | 5       | -      | -        | 5      | x    |
| Раздел     | 16. Радиационная экспертиза и ветеринарно-экологический мониторинг с                                                                                                                                                                            | бъектов | ветери | нарно-са | анитар | ного |
| <i>(</i> 1 | Надзора Организация и ведение животноводства в условиях радиоактивного                                                                                                                                                                          |         |        |          |        |      |
| 6.1.       | загрязнения. Использование кормов, кормовых угодий, животных и продукции животноводства, загрязнённых радионуклидами                                                                                                                            | 5       | -      | -        | 5      | X    |
| 6.2.       | Ветеринарная радиометрическая экспертиза, её цель и порядок проведения                                                                                                                                                                          | 3       | 2      | -        | 1      | X    |
| 6.3.       | Определение суммарной бета-активности кормов, продуктов животноводства по зольному остатку. Расчёт активности относительным методом                                                                                                             | 5       | -      | -        | 5      | X    |

| 6.4.   | Спектрометрические методы радиационной экспертизы кормов и продуктов животноводства                                                                             | 5   | - | - | 5   | X |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|-----|---|
| 6.5.   | Особенности проведения ветеринарных мероприятий в зонах интенсивного радиоактивного загрязнения.                                                                | 5   | - | - | 5   | Х |
| 6.6.   | Ветеринарно-санитарная экспертиза объектов животноводства при радиационных поражениях от внешних источников и при поступлении радионуклидов в организм животных | 5   | - | - | 5   | X |
| Разде. | Раздел 7. Использование радиоактивных изотопов, радионуклидных методов и радиационной биотехнологии в животноводстве и ветеринарии                              |     |   |   |     |   |
| 7.1.   | Применение ионизирующих излучений и радионуклидных методов в животноводстве и ветеринарии                                                                       | 5   | - | - | 5   | X |
| 7.2.   | Использование радиоизотопов в научных исследованиях, в<br>ветеринарии и некоторых отраслях промышленности                                                       | 5   | - | - | 5   | X |
|        | Контроль зачет с оценкой                                                                                                                                        | 4   | X | X | X   | 4 |
|        | Общая трудоемкость                                                                                                                                              | 180 | 6 | 6 | 164 | 4 |

## 4. Структура и содержание дисциплины 4.1 Содержание дисциплины

# Раздел 1. Основы радиационной безопасности и организация работы с радиоактивными веществами

Краткая история развития радиобиологии. Вклад отечественных ученых в развитие науки. Предмет и задачи ветеринарной радиобиологии и связь её с другими науками. Ветеринарная радиологическая служба и её задачи в современных условиях. Перспективы использования радиоизотопов и радиационной технологии в научных исследованиях и народном хозяйстве.

Радиационная безопасность как социально-гигиеническая проблема. Основные цели и задачи радиационной безопасности. Нормирование радиационного фактора: «Нормы радиационной безопасности НРБ-99» и «Основные санитарные правила и нормы (СанПиН)», регламентирующие требования по обеспечению радиационной безопасности. Размещение и оборудование ветеринарных радиологических лабораторий (отделов). Способы защиты от внешнего и внутреннего облучения: расстояние, время, экранирование, разбавление. Меры индивидуальной защиты и личной гигиены. Средства защиты и защитные материалы. Допустимые уровни загрязнения рабочих мест, спецодежды и пр. Техника безопасности при ведении животноводства и технологической переработке продукции животноводства в условиях радиоактивного загрязнения территории. Общие положения радиационной безопасности при использовании ионизирующих излучений в различных процессах радиационной технологии. Методы дезактивации. Сбор, удаление и обезвреживание твёрдых и жидких радиоактивных отходов. Мероприятия при аварийных ситуациях. Радиационный контроль.

### Раздел 2. Физические основы радиобиологии

Основные закономерности микромира. Элементарные частицы.

Физическая характеристика элементарных частиц. Энергия связи частиц в ядре. Масса ядра и дефект массы. Электронная оболочка атома.

Стабильные и нестабильные (радиоактивные) изотопы. Явление радиоактивности. Естественная и искусственная радиоактивность. Типы ядерных превращений. Радиоактивные излучения, их виды и характеристика. Закон радиоактивного распада. Единицы радиоактивности. Радиоактивные семейства. Получение и свойства искусственных радионуклидов. Ядерные реакции. Взаимодействие альфа- и бета-частиц с веществом. Закон ослабления пучка бета-частиц. Слой половинного ослабления бета-частиц в веществе. Обратное рассеяние. Самопоглощение.

Виды взаимодействия гамма-излучения с веществом. Закон поглощения гамма-лучей. Основные эффекты взаимодействия нейтронов с веществом. Наведённая радиоактивность. Защита от ионизирующих излучений.

#### Раздел 3. Дозиметрия и радиометрия ионизирующих излучений

Понятие о дозиметрии и радиометрии, их цели и задачи. Методы и средства

обнаружения и регистрации ионизирующих излучений. Методы детектирования, основанные на первичных эффектах взаимодействия ионизирующих излучений с веществом. Ионизационные методы. Вольтамперная характеристика газоразрядного счетчика. Устройство и классификация ионизационных счетчиков, их рабочая характеристика. Работа радиометрической установки, эффективность счетчика и эффективность счета. Условия, влияющие на эффективность счета.

Сцинтилляционные методы регистрации и измерения излучений. Понятие о сцинтилляторах. Фотоэлектронные умножители. Методы детектирования, основанные на вторичных эффектах взаимодействия излучений с веществом — фотографический, химический, калориметрический, колориметрический и др. Классификация радиометрических, дозиметрических и спектрометрических приборов, их устройство и назначение. Основные методы измерения радиоактивности препаратов — сравнительный (относительный), расчетный и абсолютный. Выбор наиболее эффективных условий и времени счета. Определение абсолютной и относительной ошибок счета.

Доза излучения, её виды и мощность. Относительная биологическая эффективность различных видов излучений. Коэффициент качества (взвешивающий коэффициент на вид излучения). Единицы измерения доз и мощностей доз. Расчет доз при внешнем и внутреннем облучении. Связь между активностью и дозой излучения. Гигиенические нормативы: предельно допустимая доза (ПДД), предельно допустимое поступление радионуклида (ПДП), предел годового поступления радионуклида (ПГП), предельно допустимое содержание радионуклида (ПДС), допустимая концентрация радионуклида (ДК), временно допустимые уровни (ВДУ).

### Раздел 4. Лучевые поражения

Современные представления о механизме биологического действия ионизирующих излучений на молекулярном и клеточном уровнях. Теории, объясняющие биологическое действие ионизирующих излучений. Структурно-метаболическая теория. Прямое и непрямое (опосредованное) действие ионизирующих излучений. Зависимость биологического действия излучений от дозы облучения и её мощности, вида ионизирующего излучения, плотности ионизации, объема и площади облучения, физиологического состояния организма и других факторов. Радиочувствительность, радиорезистентность. Восстановительные и компенсаторные процессы при облучении на молекулярном, клеточном уровнях и в целом организме. Проблема действия малых доз ионизирующих излучений. Радиационный гормезис.

Радиотоксикологическая характеристика наиболее опасных радиоактивных продуктов ядерного деления (90 Sr, 134 Cs, 137 Cs, 131 I, 10 Po, 239 Pu и др.). Классификация радионуклидов по их радиотоксичности. Закономерности метаболизма радионуклидов в организме животных. Источники, пути поступления и распределение радионуклидов в организме. Типы распределения: равномерный, ретикуло-эндотелиальный, остеотропный, печеночный, почечный, тиреотропный. Понятие о критическом органе. Накопление радионуклидов в органах и тканях. Эффективный период полувыведения. Методы ускорения выведения радионуклидов из организма.

Факторы, определяющие степень биологического действия инкорпорированных радионуклидов – доза, вид и энергия излучения, пути поступления и выведения из организма, тип распределения в организме, период полураспада и эффективный период полувыведения, растворимость и другие физико-химические и биологические свойства радиоактивного вещества.

Лучевая болезнь, её формы и степени, генетические эффекты. Острая лучевая болезнь, вызванная внешним облучением, её периоды и степени тяжести. Патогенез, клинические признаки, патологоанатомические изменения, диагноз, прогноз, лечение и профилактика лучевой болезни у различных видов животных. Особенности клинической и патологоанатомической картины лучевой болезни при радиационных комбинированных и сочетанных лучевых поражениях. Особенности течения лучевой болезни у различных видов сельскохозяйственных животных. Хроническая лучевая болезнь. Особенности развития и течения заболевания. Диагноз, прогноз и исходы. Профилактика и лечение при хронической

лучевой болезни.

Лучевые ожоги. Этиология, патогенез, клинические признаки и исходы лучевых ожогов. Отличительные признаки лучевых ожогов от термических и химических. Профилактика и лечение при лучевых ожогах. Генетические эффекты. Радиационный мутагенез. Возможные последствия мутаций в соматических клетках — лейкозы, рак, нарушения иммуногенеза и др. Зависимость генетического эффекта от величины дозы излучения и распределения её по областям тела и во времени. Действие ионизирующего излучения на зародыш, эмбрион и плод.

#### Раздел 5. Основы радиоэкологии

Радиоэкология и её задачи. Источники и пути поступления радионуклидов во внешнюю среду. Физико-химическое состояние радионуклидов в воде, почве, кормах, органах и тканях животных.

Миграция радионуклидов по биологическим цепочкам: почва – растение – животное – продукты животноводства – человек. Переход радионуклидов в продукцию животноводства. Особенности накопления радионуклидов в продукции рыбоводства, пчеловодства, звероводства и промысловых животных.

Прогнозирование поступления радионуклидов в корма и продукцию животноводства. радионуклидов Нормирование поступления В корма, организм продукцию сельскохозяйственных животных. Предельно допустимые концентрации (уровни) радионуклидов в кормах для продуктивных животных, в продуктах и сырье животного и растительного происхождения. Предельно допустимые уровни загрязнения радиоактивными веществами кожных покровов животных, поверхности рабочих помещений и транспортных средств.

# Раздел 6. Радиационная экспертиза и радиологический мониторинг объектов ветеринарно-санитарного надзора

Организация и ведение животноводства в условиях радиоактивного загрязнения. Использование кормов, кормовых угодий, животных и продукции животноводства, загрязнённых радионуклидами. Организация и проведение мероприятий, направленных на снижение поступления радионуклидов в сельскохозяйственные растения и продукцию животноводства в условиях радиоактивного загрязнения среды. Технологические способы переработки загрязнённой радионуклидами животноводческой продукции.

Системы и методы радиологического контроля. Положение о системе государственного ветеринарного радиологического контроля Российской Федерации. Основные принципы организации радиологического контроля в ветеринарии. Цели и задачи ветеринарной радиометрической экспертизы объектов ветнадзора. Последовательные этапы ее выполнения. Объекты исследования, правила отбора и пересылки проб. Экспрессные и лабораторные методы радиационной экспертизы. Разновидности экспрессных методов. Измерение суммарной бета-активности.

Экспрессные методы определения  $^{90}$ Sr,  $^{137}$ Cs и  $^{131}$ I. Экспрессные методы измерения радиоактивности гамма-излучения. Экспресс-метод радиационного контроля на продовольственных рынках. Прижизненный радиационный контроль. Оценка данных радиометрического контроля.

Ветеринарная радиохимическая экспертиза, её цели и задачи. Принципы радиохимического анализа при определении активности объектов ветнадзора по содержанию  $^{90}$ Sr,  $^{137}$ Cs,  $^{131}$ I,  $^{210}$ Pb,  $^{210}$ Po. Спектрометрические методы радиационной экспертизы, их классификация (альфа-, бета-, гамма-спектрометрические методы), физические основы этих методов, достоинства, преимущества, пути преодоления возможных ошибок измерения. Особенности проведения полевой спектрометрии.

# Раздел 7. Использование радиоактивных изотопов, радионуклидных методов и радиационной биотехнологии в животноводстве и ветеринарии

Применение радионуклидных методов при исследовании функционального состояния органов и систем организма, изучении обмена веществ у животных, фармакодинамики лекарственных веществ. Использование радиоизотопных методов в токсикологии,

физиологии, патофизиологии, терапии, хирургии, акушерстве, паразитологии, микробиологии и т.д. Метод авторадиографии. Использование радиоиммунологического анализа для ранней диагностики стельности коров, выявления нарушений функции репродуктивных органов у животных, оценки функциональной активности эндокринных желез: щитовидной, поджелудочной, гипофиза и надпочечников, диагностика вирусных инфекций.

Использование радиационной технологии в растениеводстве и животноводстве с целью стимуляции роста, развития и повышения продуктивности животных, изменения наследственных свойств организма. Возможности применения радиационной биотехнологии при производстве кормов и кормовых добавок; для обработки готовой продукции животноводства с целью удлинения сроков хранения и обеззараживания при некоторых заболеваниях; для стерилизации инструментов, биопрепаратов, перевязочных средств, для радиационного обеззараживания кожевенного сырья, шерсти, тары, навоза, для уничтожения вредных насекомых, для получения вакцин. Использование радиационной технологии в диагностике болезней, терапии, в биологической промышленности и других отраслях народного хозяйства.

#### 4.2. Содержание лекций

| № п/п     | Наименование лекции                                                                | Кол-во |
|-----------|------------------------------------------------------------------------------------|--------|
| J\2 11/11 | таимснование декции                                                                | часов  |
|           | Элементы ядерной физики (строение атома, характеристика элементарных частиц. Масса |        |
| 1         | ядра атома, дефект массы, ядерные силы, ионизация и возбуждение). Радиоактивность. | 2      |
|           | Закон радиоактивного распада. Единицы радиоактивности                              |        |
|           | Острая лучевая болезнь и её формы, патогенез, клинические и патоморфологические    |        |
| 2         | изменения у разных видов животных. Диагностика, прогноз, лечение и профилактика    | 2      |
|           | острой лучевой болезни и её отдалённые последствия                                 |        |
| 3         | Ветеринарная радиометрическая экспертиза, её цель и порядок проведения             | 2      |
|           | Итого                                                                              | 6      |

### 4.3. Содержание лабораторных занятий

Лабораторные занятия не предусмотрены

### 4.4. Содержание практических занятий

| No  | Наименование практических занятий                                                                                                                                                                                                                                                                                                  |   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| п/п |                                                                                                                                                                                                                                                                                                                                    |   |
| 1   | Радиоактивность. Характеристика ионизирующих излучений                                                                                                                                                                                                                                                                             | 2 |
| 2   | Дозиметрия ионизирующих излучений. Доза, виды доз, мощность дозы, единицы измерения. Расчёт доз внешнего и внутреннего облучения человека и животных. Решение задач по дозиметрии. Приборы и методы дозиметрического контроля, их устройство и порядок работы с основными типами дозиметров (индивидуального и общего пользования) | 2 |
| 3   | Методы обнаружения и регистрации ионизирующих излучений. Детекторы ионизирующих излучений, их устройство, принцип работы. Счётная характеристика детекторов. Радиометрия. Методы и приборы, используемые для радиационной экспертизы объектов ветнадзора                                                                           | 2 |
|     | Итого                                                                                                                                                                                                                                                                                                                              | 6 |

4.5. Виды и содержание самостоятельной работы обучающихся 4.5.1. Виды самостоятельной работы обучающихся

| Виды самостоятельной работы обучающихся                  | Количество часов |
|----------------------------------------------------------|------------------|
| Подготовка к практическим занятиям                       | 9                |
| Самостоятельное изучение отдельных тем и вопросов        | 134              |
| Подготовка к решению задач                               | 4                |
| Подготовка к тестированию                                | 8                |
| Подготовка к промежуточной аттестации (зачету с оценкой) | 9                |
| Итого                                                    | 164              |

### 4.5.2. Содержание самостоятельной работы обучающихся

| №<br>п/п | Наименование темы                                                                                                                                                                                                                                                                                                                  | Количество<br>часов |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1        | Предмет и задачи радиобиологии. Этапы развития радиобиологии                                                                                                                                                                                                                                                                       | 5                   |
| 2        | Техника радиационной безопасности, средства и способы защиты при работе с радиоактивными веществами, источниками ионизирующих излучений и в условиях ведения животноводства на радиоактивно загрязнённых территориях                                                                                                               | 5                   |
| 3        | Основные цели и задачи радиационной безопасности. Нормы радиационной безопасности<br>НРБ-99 и основные санитарные правила и нормы (СанПиН). Радиоактивные отходы, их<br>классификация, способы дезактивации и варианты утилизации                                                                                                  | 5                   |
| 4        | Элементы ядерной физики (строение атома, характеристика элементарных частиц. Масса ядра атома, дефект массы, ядерные силы, ионизация и возбуждение). Радиоактивность. Закон радиоактивного распада. Единицы радиоактивности                                                                                                        | 1                   |
| 5        | Типы ядерных превращений                                                                                                                                                                                                                                                                                                           | 5                   |
| 6        | Взаимодействие ионизирующих излучений с веществом                                                                                                                                                                                                                                                                                  | 5                   |
| 7        | Радиоактивность. Характеристика ионизирующих излучений                                                                                                                                                                                                                                                                             | 2                   |
| 8        | Явление радиоактивности. Естественная и искусственная радиоактивность. Взаимодействие корпускулярных и электромагнитных излучений с веществом                                                                                                                                                                                      | 5                   |
| 9        | Дозиметрия ионизирующих излучений. Доза, виды доз, мощность дозы, единицы измерения. Расчёт доз внешнего и внутреннего облучения человека и животных. Решение задач по дозиметрии. Приборы и методы дозиметрического контроля, их устройство и порядок работы с основными типами дозиметров (индивидуального и общего пользования) | 2                   |
| 10       | Методы обнаружения и регистрации ионизирующих излучений. Детекторы ионизирующих излучений, их устройство, принцип работы. Счётная характеристика детекторов. Радиометрия. Методы и приборы, используемые для радиационной экспертизы объектов ветнадзора.                                                                          | 2                   |
| 11       | Изучение характера поглощения бета-излучения в веществе. Определение слоя половинного ослабления. Расчёт толщины защитного экрана                                                                                                                                                                                                  | 5                   |
| 12       | Градуировка радиометрических приборов с помощью эталонных источников. Приготовление эталонов из КСl и определение толщины слоя препарата                                                                                                                                                                                           | 5                   |
| 13       | Относительный метод определения радиоактивности препаратов. Влияние условий радиометрии на скорость счёта препарата. Выбор времени счёта. Статистическая обработка результатов радиометрии                                                                                                                                         | 5                   |
| 14       | Вольтамперная характеристика газового разряда                                                                                                                                                                                                                                                                                      | 5                   |
| 15       | Современные представления о механизме биологического действия излучений. Теории биологического действия                                                                                                                                                                                                                            | 5                   |
| 16       | Токсичность радионуклидов. Закономерности их метаболизма в организме животных. Источники и пути поступления. Распределение, накопление и выведение из организма                                                                                                                                                                    | 5                   |
| 17       | Острая лучевая болезнь и её формы, патогенез, клинические и патоморфологические изменения у разных видов животных. Диагностика, прогноз, лечение и профилактика острой лучевой болезни и её отдалённые последствия                                                                                                                 | 1                   |
| 18       | Лучевые ожоги (этиология, патогенез, клинические признаки и исход)                                                                                                                                                                                                                                                                 | 5                   |
| 19       | Определение активности стронция-90 и цезия-137 в молоке, мясе и костях животных                                                                                                                                                                                                                                                    | 5                   |
| 20       | Клинико-гематологические и патоморфологические изменения у животных при лучевой болезни. Особенности лучевой болезни при внутреннем облучении                                                                                                                                                                                      | 5                   |
| 21       | Радиочувствительность, радиорезистентность. Восстановительные и компенсаторные процессы при облучении на молекулярном, клеточном уровнях и в целом в организме. Проблема действия малых доз ионизирующих излучений. Радиационный гормезис                                                                                          | 5                   |
| 22       | Радиотоксикологическая характеристика $^{210}$ Ро и $^{239}$ Ри. Методы ускорения выведения радионуклидов из организма                                                                                                                                                                                                             | 5                   |
| 23       | Особенности течения лучевой болезни у различных видов сельскохозяйственных животных при внешнем облучении                                                                                                                                                                                                                          | 5                   |
| 24       | Сельскохозяйственная радиоэкология, как составная часть ветеринарной радиобиологии, её цель и задачи. Источники загрязнения окружающей среды. Физико-химическое состояние радионуклидов в воде, почве, кормах, органах и тканях животных                                                                                           | 5                   |

| 25 | Системы и методы радиологического контроля объектов ветеринарного надзора. Оценка радиационной обстановки с помощью полевых радиометров СРП-68-01, ДП-5, ДКС-04, ДБГН-01, «Эксперт»                                                             | 5   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 26 | Правила отбора и подготовки проб для радиационной экспертизы                                                                                                                                                                                    | 5   |
| 27 | Общая характеристика экспрессных методов определения радиоактивности объектов ветнадзора. Определение ОА и УА гамма-излучающих нуклидов в кормах и продукции животноводства                                                                     | 5   |
| 28 | Пути поступления радионуклидов во внешнюю среду. Поступление радиоактивных продуктов деления в организм животных и продукцию                                                                                                                    | 5   |
| 29 | Прогнозирование и нормирование поступления радионуклидов в корма, организм и продукцию животноводства. Предельно допустимые концентрации (уровни) радионуклидов в кормах для продуктивных животных, в продуктах и сырье животного происхождения | 5   |
| 30 | Организация и ведение животноводства в условиях радиоактивного загрязнения.<br>Использование кормов, кормовых угодий, животных и продукции животноводства,<br>загрязнённых радионуклидами                                                       | 5   |
| 31 | Ветеринарная радиометрическая экспертиза, её цель и порядок проведения                                                                                                                                                                          | 1   |
| 32 | Определение суммарной бета-активности кормов, продуктов животноводства по зольному остатку. Расчёт активности относительным методом                                                                                                             | 5   |
| 33 | Спектрометрические методы радиационной экспертизы кормов и продуктов животноводства                                                                                                                                                             | 5   |
| 34 | Особенности проведения ветеринарных мероприятий в зонах интенсивного радиоактивного загрязнения.                                                                                                                                                | 5   |
| 35 | Ветеринарно-санитарная экспертиза объектов животноводства при радиационных поражениях от внешних источников и при поступлении радионуклидов в организм животных                                                                                 | 5   |
| 36 | Применение ионизирующих излучений и радионуклидных методов в животноводстве и ветеринарии                                                                                                                                                       | 5   |
| 37 | Использование радиоизотопов в научных исследованиях, в ветеринарии и некоторых отраслях промышленности                                                                                                                                          | 5   |
|    | Итого                                                                                                                                                                                                                                           | 164 |

### 5. Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине

Учебно-методические разработки имеются в Научной библиотеке  $\Phi \Gamma EOY$  ВО Южно-Уральский  $\Gamma AY$ :

- 1. Кузьмина Л. Н. Ветеринарная радиобиология [Электронный ресурс]: методические рекомендации по организации и выполнению самостоятельной работы обучающихся по специальности 36.05.01 Ветеринария, направленность программы Диагностика, лечение и профилактика болезней животных, уровень высшего образования специалитет, форма обучения: заочная / Л.Н. Кузьмина, Т.Т. Левицкая, Н.М. Колобкова Троицк: Южно-Уральский ГАУ, 2020. 33 с. Режимы доступа:
  - 1. <a href="https://edu.sursau.ru/enrol/index.php?id=2867">https://edu.sursau.ru/enrol/index.php?id=2867</a>.
  - 2. http://nb.sursau.ru:8080/localdocs/ivm/00440.pdf
- 2. Кузьмина Л. Н. Ветеринарная радиобиология [Электронный ресурс]: сборник задач для обучающихся по специальности 36.05.01 Ветеринария, направленность программы Диагностика, лечение и профилактика болезней животных, уровень высшего образования специалитет, форма обучения заочная / Т.Т. Левицкая, Л.Н. Кузьмина, Н.М. Колобкова Троицк: ФГБОУ ВО Южно-Уральский ГАУ, 2020. 36 с. Режимы доступа:
  - 1. https://edu.sursau.ru/enrol/index.php?id=2867.
  - 2. http://nb.sursau.ru:8080/localdocs/ivm/00442.pdf
- 3. Кузьмина Л.Н. Ветеринарная радиобиология [Электронный ресурс]: методические указания к практическим занятиям для обучающихся по специальности 36.05.01 Ветеринария, направленность программы Диагностика, лечение и профилактика болезней животных, уровень высшего образования специалитет, форма обучения: заочная / Л. Н. Кузьмина, Т. Т. Левицкая, Н.М. Колобкова Троицк: ФГБОУ ВО Южно-Уральский ГАУ, 2020. 23 с. Режимы доступа:

- 1. https://edu.sursau.ru/enrol/index.php?id=2867
- 2. http://nb.sursau.ru:8080/localdocs/ivm/00441.pdf

### 6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Для установления соответствия уровня подготовки обучающихся требованиям ФГОС ВО разработан фонд оценочных средств для текущего контроля успеваемости и проведения промежуточной аттестации обучающихся по дисциплине. Фонд оценочных средств представлен в Приложении.

# 7. Основная и дополнительная учебная литература, необходимая для освоения дисциплины

Основная и дополнительная учебная литература имеется в Научной библиотеке и электронной информационно-образовательной среде ФГБОУ ВО Южно-Уральский ГАУ.

#### Основная:

- 1. Радиобиология [Электронный ресурс] : учебник / Н.П. Лысенко [и др.] ; под ред. Н. П. Лысенко, В. В. Пак. Электрон. дан. Санкт-Петербург : Лань, 2017. 572 с. Доступ к полному тексту с сайта ЭБС Лань: <a href="https://e.lanbook.com/book/90856">https://e.lanbook.com/book/90856</a>.
- 2. Радиобиология : учебник / Н. П. Лысенко, В. В. Пак, Л. В. Рогожина, З. Г. Кусурова ; под редакцией Н. П. Лысенко, В. В. Пака. 5-е изд., стер. Санкт-Петербург : Лань, 2019. 572 с. ISBN 978-5-8114-4523-3. Текст : электронный // Лань : электроннобиблиотечная система. URL: <a href="https://e.lanbook.com/book/121988">https://e.lanbook.com/book/121988</a> (дата обращения: 03.05.2020). Режим доступа: для авториз. пользователей.
- 3. Степанов, В.Г. Ветеринарная радиобиология [Электронный ресурс] : учеб. пособие / В.Г. Степанов. Электрон. дан. Санкт-Петербург : Лань, 2018. 352 с. Доступ к полному тексту с сайта ЭБС Лань: <a href="https://e.lanbook.com/book/107298">https://e.lanbook.com/book/107298</a>.

#### Дополнительная

- 1. Краткий курс ветеринарной радиобиологии : учебное пособие / Е. И. Трошин, Р. М. Васильев, Р. О. Васильев [и др.] ; составители Е. И. Трошин [и др.]. Санкт-Петербург : СПбГАВМ, 2019. 184 с. Доступ к полному тексту с сайта ЭБС Лань: https://e.lanbook.com/book/137590.
- 2. Ветеринарная радиобиология : учебное пособие / С. А. Сашенкова, Г. В. Ильина, Е. Г. Куликова, Д. Ю. Ильин. Пенза : ПГАУ, 2019. 180 с. Доступ к полному тексту с сайта ЭБС Лань: https://e.lanbook.com/book/131088.
- 3. Верещако, Г.Г. Радиобиология: термины и понятия: энциклопедический справочник / Г.Г. Верещако, А.М. Ходасовская; Национальная академия наук Беларуси, Институт радиобиологии. Минск: Беларуская навука, 2016. 341 с. Библиогр.: с. 332-336 [Электронный ресурс]. URL: <a href="http://biblioclub.ru/index.php?page=book&id=443956">http://biblioclub.ru/index.php?page=book&id=443956</a>.

# 8. Ресурсы информационно-телекоммуникационной сети «интернет», необходимые для освоения дисциплины

- 1. Единое окно доступа к учебно-методическим разработкам https://юургау.рф
- 2. ЭБС «Издательство «Лань» http://e.lanbook.com
- 3. ЭБС «Университетская библиотека online» http://biblioclub.ru
- 4. Научная электронная библиотека «eLIBRARY.ru»

#### 9. Методические указания для обучающихся по освоению дисциплины

Учебно-методические разработки имеются в Научной библиотеке и электронной информационно-образовательной среде ФГБОУ ВО Южно-Уральский ГАУ:

- 1. Кузьмина Л. Н. Ветеринарная радиобиология [Электронный ресурс]: методические рекомендации по организации и выполнению самостоятельной работы обучающихся по специальности 36.05.01 Ветеринария, направленность программы Диагностика, лечение и профилактика болезней животных, уровень высшего образования специалитет, форма обучения: заочная / Л.Н. Кузьмина, Т.Т. Левицкая, Н.М. Колобкова Троицк: Южно-Уральский ГАУ, 2020. 33 с. Режимы доступа:
  - https://edu.sursau.ru/enrol/index.php?id=2867.
  - 2. http://nb.sursau.ru:8080/localdocs/ivm/00440.pdf.
- 2. Кузьмина Л. Н. Ветеринарная радиобиология [Электронный ресурс]: сборник задач для обучающихся по специальности 36.05.01 Ветеринария, направленность программы Диагностика, лечение и профилактика болезней животных, уровень высшего образования специалитет, форма обучения заочная / Т.Т. Левицкая, Л.Н. Кузьмина, Н.М. Колобкова Троицк: ФГБОУ ВО Южно-Уральский ГАУ, 2020. 36 с. Режимы доступа:
  - 1. https://edu.sursau.ru/enrol/index.php?id=2867.
  - 2. http://nb.sursau.ru:8080/localdocs/ivm/00442.pdf
- 3. Кузьмина Л.Н. Ветеринарная радиобиология [Электронный ресурс]: методические указания к практическим занятиям для обучающихся по специальности 36.05.01 Ветеринария, направленность программы Диагностика, лечение и профилактика болезней животных, уровень высшего образования специалитет, форма обучения: заочная / Л. Н. Кузьмина, Т. Т. Левицкая, Н.М. Колобкова Троицк: ФГБОУ ВО Южно-Уральский ГАУ, 2020. 23 с. Режимы доступа:
  - 1. https://edu.sursau.ru/enrol/index.php?id=2867.
  - 2. http://nb.sursau.ru:8080/localdocs/ivm/00441.pdf.

# 10. Информационные технологии, используемые при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- В Научной библиотеке с терминальных станций предоставляется доступ к базам данных:
  - 1. «Техэксперт: Базовые нормативные документы»
  - 2. «Техэксперт: Пищевая промышленность»
  - 3. «Сельхозтехника»
  - 4. «КонсультантПлюс»
- 5. Электронный каталог Института ветеринарной медицины <a href="http://nb.sursau.ru:8080/cgi/zgate.exe?Init+IVM">http://nb.sursau.ru:8080/cgi/zgate.exe?Init+IVM</a> rus1.xml,simpl IVM1.xsl+rus

Программное обеспечение общего назначения:

- 1. Операционная система Microsoft Windows.
- 2. Офисный пакет Microsoft Office.
- 3. Программный комплекс для тестирования знаний MyTestXPRo 11.0.
- 4. Антивирус Kaspersky Endpoint Security.

# 11. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Учебные аудитории для проведения учебных занятий, предусмотренных программой, оснащенные оборудованием и техническими средствами обучения

- 1. Учебная аудитория для проведения учебных занятий №VI.
- 2. Учебная аудитория для проведения учебных занятий № 062.

### Помещения для самостоятельной работы обучающихся

Помещение для самостоятельной работы, оснащенное компьютерной техникой с подключением к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду № 42.

### Перечень оборудования и технических средств обучения

Переносной мультимедийный комплекс (ноутбук 15,6 HP Pavilion, мышь оптическая, проектор ViewSonic PJD5123, экран Draper)

| ПРИЛОЖЕНИЕ |
|------------|
|------------|

|  | ФОНД | ОЦЕНО | чных | СРЕД | <b>CTB</b> |
|--|------|-------|------|------|------------|
|--|------|-------|------|------|------------|

для текущего контроля успеваемости и проведения промежуточной аттестации обучающихся

### СОДЕРЖАНИЕ

| 1. Компетенции и их индикаторы, формируемые в процессе освоения дисциплины                                                                                                                                      | 19     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 2. Показатели, критерии и шкала оценивания индикаторов достижения компетенций                                                                                                                                   | 20     |
| 3. Типовые контрольные задания и (или) иные материалы, необходимые для оценки зна<br>умений, навыков и (или) опыта деятельности, характеризующих сформированность<br>компетенций в процессе освоения дисциплины |        |
| 4. Методические материалы, определяющие процедуры оценивания знаний, умений, на и (или) опыта деятельности, характеризующих сформированность компетенций                                                        | авыков |
| 4.1. Оценочные средства для проведения текущего контроля успеваемости                                                                                                                                           | 23     |
| 4.1.1 Устный опрос на практическом занятии                                                                                                                                                                      | 23     |
| 4.1.2 Оценка выполнения практического задания на занятии                                                                                                                                                        | 26     |
| 4.1.3 Решение задач                                                                                                                                                                                             | 28     |
| 4.1.4 Тестирование                                                                                                                                                                                              | 32     |
| 4.2. Процедуры и оценочные средства для проведения промежуточной аттестации                                                                                                                                     | 35     |
| 4.2.1. Зачет с оценкой                                                                                                                                                                                          | 35     |

### 1. Компетенции и их индикаторы, формируемые в процессе освоения дисциплины

УК-1. Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий

|                                                      |                                | Формируемые ЗУН              |                                |                       | Наименование оценочных средств |  |
|------------------------------------------------------|--------------------------------|------------------------------|--------------------------------|-----------------------|--------------------------------|--|
| Код и наименование индикатора достижения компетенции | Знания                         | Умения                       | Навыки                         | Текущая аттестация    | Промежуточная<br>аттестация    |  |
| ИД-1.УК-1                                            | Обучающийся должен знать:      | Обучающийся должен уметь:    | Обучающийся должен владеть:    | Устный опрос на       | Зачет с оценкой                |  |
| Осуществляет поиск,                                  | ветеринарную радиобиологию     | осуществлять поиск,          | способами поиска, критическим  | практическом занятии, |                                |  |
| критический анализ и                                 | для осуществления поиска,      | критический анализ и синтез  | анализом и синтезом информации | оценка выполнения     |                                |  |
| синтез информации,                                   | критического анализа и синтеза | информации по ветеринарной   | по ветеринарной радиобиологии  | практического задания |                                |  |
| применяет системный                                  | информации, применения         | радиобиологии для применения | для применения системного      | на занятии, решение   |                                |  |
| подход для решения                                   | системного подхода для         | системного подхода в решении | подхода в решении поставленных | задач, тестирование   |                                |  |
| поставленных задач                                   | решения поставленных задач -   | поставленных задач -         | задач -                        |                       |                                |  |
|                                                      | (Б1.О.16, УК-1-3.1)            | - (Б1.О.16, УК-1-У.1)        | (Б1.О.16, УК-1-Н.1)            |                       |                                |  |

ОПК-2. Способен интерпретировать и оценивать в профессиональной деятельности влияние на физиологическое состояние организма

животных природных, социально-хозяйственных, генетических и экономических факторов

| Код и наименование  |                               | Формируемые ЗУН              |                               | Наименование оцено    | очных средств   |
|---------------------|-------------------------------|------------------------------|-------------------------------|-----------------------|-----------------|
| индикатора          | Знания                        | Умения                       | Навыки                        | Тоганная отпостания   | Промежуточная   |
| достижения          |                               |                              |                               | Текущая аттестация    | аттестация      |
| компетенции         |                               |                              |                               |                       |                 |
| ИД-1. ОПК-2         | Обучающийся должен знать      | Обучающийся должен уметь:    | Обучающийся должен владеть:   | Устный опрос на       | Зачет с оценкой |
| Осуществляет        | характеристику ионизирующих   | осуществлять интерпретацию и | навыками интерпретации и      | практическом занятии, |                 |
| интерпретацию и     | излучений, токсикологию       | анализ действия              | анализом действия             | оценка выполнения     |                 |
| анализ действия     | радиоактивных веществ для     | ионизирующего излучения и    | ионизирующего излучения и     | практического задания |                 |
| различных факторов  | осуществления интерпретации и | радиоактивных веществ на     | радиоактивных веществ на      | на занятии, решение   |                 |
| на физиологическое  | анализа действия различных    | физиологическое состояние    | физиологическое состояние     | задач, тестирование   |                 |
| состояние организма | факторов на физиологическое   | организма животных в         | организма животных в          |                       |                 |
| животных в          | состояние организма животных  | профессиональной             | профессиональной деятельности |                       |                 |
| профессиональной    | в профессиональной            | деятельности —               | - (Б1.О.16, ОПК-2-Н.1)        |                       |                 |
| деятельности        | деятельности –                | (Б1.О.16, ОПК-2-У.1)         |                               |                       |                 |
|                     | (Б1.О.16, ОПК-2-3.1)          |                              |                               |                       |                 |

ОПК-3. Способен осуществлять и совершенствовать профессиональную деятельность в соответствии с нормативными правовыми актами в сфере агропромышленного комплекса

| Код и наименование                                                                                                                                                                                                  | Формируемые ЗУН                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                  | Наименование оцен                                                                                                     | очных средств               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|
| индикатора достижения<br>компетенции                                                                                                                                                                                | Знания                                                                                                                                                                                                                                                                                           | Умения                                                                                                                                                                                                                                                                                            | Навыки                                                                                                                                                                                                                                                                                           | Текущая аттестация                                                                                                    | Промежуточная<br>аттестация |
| ИД-1. ОПК-3 Осуществляет поиск современной актуальной и достоверной информации о нормативных правовых актах в сфере агропромышленного комплекса совершенствует, профессиональную деятельность в соответствии с ними | Обучающийся должен знать нормы радиационной безопасности для осуществления поиска современной актуальной и достоверной информации о нормативных правовых актах в сфере агропромышленного комплекса, совершенствования профессиональной деятельности в соответствии с ними – (Б1.О.16, ОПК-3-3.1) | Обучающийся должен уметь: осуществлять поиск современной актуальной и достоверной информации о нормах радиационной безопасности в нормативных правовых актах в сфере агропромышленного комплекса для совершенствования профессиональной деятельности в соответствии с ними – (Б1.О.16, ОПК-3-У.1) | Обучающийся должен владеть: навыками поиска современной актуальной и достоверной информации о нормах радиационной безопасности в нормативных правовых актах в сфере агропромышленного комплекса для совершенствования профессиональной деятельности в соответствии с ними - (Б1.О.16, ОПК-3-H.1) | Устный опрос на практическом занятии, оценка выполнения практического задания на занятии, решение задач, тестирование | Зачет с оценкой             |

### 2. Показатели, критерии и шкала оценивания индикаторов достижения компетенций

ИД-1.УК-1. Осуществляет поиск, критический анализ и синтез информации, применяет системный подход для решения поставленных задач

| Формируемые ЗУН   |                                | Критерии и шкала оценивания     | результатов обучения по дисциплине |                                    |
|-------------------|--------------------------------|---------------------------------|------------------------------------|------------------------------------|
| r ry              | Недостаточный уровень          | Достаточный уровень             | Средний уровень                    | Высокий уровень                    |
| Б1.О.16, УК-1-3.1 | Обучающийся не знает           | Обучающийся слабо знает         | Обучающийся с незначительными      | Обучающийся с требуемой степенью   |
|                   | ветеринарную радиобиологию     | ветеринарную радиобиологию для  | ошибками и отдельными пробелами    | полноты и точности знает           |
|                   | для осуществления поиска,      | осуществления поиска,           | знает ветеринарную радиобиологию   | ветеринарную радиобиологию для     |
|                   | критического анализа и синтеза | критического анализа и синтеза  | для осуществления поиска,          | осуществления поиска, критического |
|                   | информации, применения         | информации, применения          | критического анализа и синтеза     | анализа и синтеза информации,      |
|                   | системного подхода для         | системного подхода для решения  | информации, применения системного  | применения системного подхода для  |
|                   | решения поставленных задач     | поставленных задач              | подхода для решения поставленных   | решения поставленных задач         |
|                   |                                |                                 | задач                              |                                    |
| Б1.О.16, УК-1-У.1 | Обучающийся не умеет           | Обучающийся слабо умеет         | Обучающийся умеет осуществлять     | Обучающийся умеет осуществлять     |
|                   | осуществлять поиск,            | осуществлять поиск, критический | поиск, критический анализ и синтез | поиск, критический анализ и синтез |
|                   | критический анализ и синтез    | анализ и синтез информации по   | информации по ветеринарной         | информации по ветеринарной         |
|                   | информации по ветеринарной     | ветеринарной радиобиологии для  | радиобиологии для применения       | радиобиологии для применения       |

|                   | радиобиологии для применения  | применения системного подхода в | системного подхода в решении    | системного подхода в решении      |
|-------------------|-------------------------------|---------------------------------|---------------------------------|-----------------------------------|
|                   | системного подхода в решении  | решении поставленных задач      | поставленных задач              | поставленных задач                |
|                   | поставленных задач            |                                 |                                 |                                   |
| Б1.О.16, УК-1-Н.1 | Обучающийся не владеет        | Обучающийся слабо владеет       | Обучающийся с небольшими        | Обучающийся свободно владеет      |
|                   | способами поиска, критическим | способами поиска, критическим   | затруднениями владеет способами | способами поиска, критическим     |
|                   | анализом и синтезом           | анализом и синтезом информации  | поиска, критическим анализом и  | анализом и синтезом информации по |
|                   | информации по ветеринарной    | по ветеринарной радиобиологии   | синтезом информации по          | ветеринарной радиобиологии для    |
|                   | радиобиологии для применения  | для применения системного       | ветеринарной радиобиологии для  | применения системного подхода в   |
|                   | системного подхода в решении  | подхода в решении поставленных  | применения системного подхода в | решении поставленных задач        |
|                   | поставленных задач            | задач                           | решении поставленных задач      |                                   |

ИД-1. ОПК-2. Осуществляет интерпретацию и анализ действия различных факторов на физиологическое состояние организма животных в профессиональной деятельности

| Формируемые ЗУН       |                                | Критерии и шкала оценивания результатов обучения по дисциплине |                                     |                                   |  |  |
|-----------------------|--------------------------------|----------------------------------------------------------------|-------------------------------------|-----------------------------------|--|--|
| + op.mpy c.mpic 33 11 | Недостаточный уровень          | Достаточный уровень                                            | Средний уровень                     | Высокий уровень                   |  |  |
| Б1.О.16, ОПК-2-3.1    | Обучающийся не знает           | Обучающийся слабо знает                                        | Обучающийся с незначительными       | Обучающийся с требуемой степенью  |  |  |
|                       | характеристику ионизирующих    | характеристику ионизирующих                                    | ошибками и отдельными пробелами     | полноты и точности знает          |  |  |
|                       | излучений, токсикологию        | излучений, токсикологию                                        | знает характеристику ионизирующих   | характеристику ионизирующих       |  |  |
|                       | радиоактивных веществ для      | радиоактивных веществ для                                      | излучений, токсикологию             | излучений, токсикологию           |  |  |
|                       | осуществления интерпретации и  | осуществления интерпретации и                                  | радиоактивных веществ для           | радиоактивных веществ для         |  |  |
|                       | анализа действия различных     | анализа действия различных                                     | осуществления интерпретации и       | осуществления интерпретации и     |  |  |
|                       | факторов на физиологическое    | факторов на физиологическое                                    | анализа действия различных факторов | анализа действия различных        |  |  |
|                       | состояние организма животных в | состояние организма животных в                                 | на физиологическое состояние        | факторов на физиологическое       |  |  |
|                       | профессиональной деятельности  | профессиональной деятельности                                  | организма животных в                | состояние организма животных в    |  |  |
|                       |                                |                                                                | профессиональной деятельности       | профессиональной деятельности     |  |  |
| Б1.О.16, ОПК-2-У.1    | Обучающийся не умеет           | Обучающийся слабо умеет                                        | Обучающийся умеет осуществлять      | Обучающийся умеет осуществлять    |  |  |
|                       | осуществлять интерпретацию и   | осуществлять интерпретацию и                                   | интерпретацию и анализ действия     | интерпретацию и анализ действия   |  |  |
|                       | анализ действия ионизирующего  | анализ действия ионизирующего                                  | ионизирующего излучения и           | ионизирующего излучения и         |  |  |
|                       | излучения и радиоактивных      | излучения и радиоактивных                                      | радиоактивных веществ на            | радиоактивных веществ на          |  |  |
|                       | веществ на физиологическое     | веществ на физиологическое                                     | физиологическое состояние организма | физиологическое состояние         |  |  |
|                       | состояние организма животных в | состояние организма животных в                                 | животных в профессиональной         | организма животных в              |  |  |
|                       | профессиональной деятельности  | профессиональной деятельности                                  | деятельности                        | профессиональной деятельности     |  |  |
| Б1.О.16, ОПК-2-Н.1    | Обучающийся не владеет         | Обучающийся слабо владеет                                      | Обучающийся с небольшими            | Обучающийся свободно владеет      |  |  |
|                       | навыками интерпретации и       | навыками интерпретации и                                       | затруднениями владеет навыками      | навыками интерпретации и анализом |  |  |
|                       | анализом действия              | анализом действия ионизирующего                                | интерпретации и анализом действия   | действия ионизирующего излучения  |  |  |
|                       | ионизирующего излучения и      | излучения и радиоактивных                                      | ионизирующего излучения и           | и радиоактивных веществ на        |  |  |
|                       | радиоактивных веществ на       | веществ на физиологическое                                     | радиоактивных веществ на            | физиологическое состояние         |  |  |
|                       | физиологическое состояние      | состояние организма животных в                                 | физиологическое состояние организма | организма животных в              |  |  |
|                       | организма животных в           | профессиональной деятельности                                  | животных в профессиональной         | профессиональной деятельности     |  |  |
|                       | профессиональной деятельности  |                                                                | деятельности                        |                                   |  |  |

ИД-1. ОПК-3. Осуществляет поиск современной актуальной и достоверной информации о нормативных правовых актах в сфере агропромышленного комплекса совершенствует, профессиональную деятельность в соответствии с ними

Критерии и шкала оценивания результатов обучения по дисциплине Формируемые ЗУН Средний уровень Высокий уровень Недостаточный уровень Достаточный уровень Б1.О.16, ОПК-3-3.1 Обучающийся слабо знает Обучающийся не знает нормы Обучающийся с незначительными Обучающийся с требуемой степенью ошибками и отдельными пробелами радиационной безопасности для нормы радиационной безопасности полноты и точности знает осуществления поиска для осуществления поиска знает нормы радиационной нормы радиационной безопасности современной актуальной и современной актуальной и безопасности для осуществления для осуществления поиска достоверной информации о достоверной информации о поиска современной актуальной и современной актуальной и нормативных правовых актах в нормативных правовых актах в достоверной информации о достоверной информации о сфере агропромышленного сфере агропромышленного нормативных правовых актах в сфере нормативных правовых актах в комплекса, совершенствования комплекса, совершенствования агропромышленного комплекса, сфере агропромышленного профессиональной деятельности в комплекса, совершенствования профессиональной деятельности совершенствования профессиональной деятельности в профессиональной деятельности в в соответствии с ними соответствии с ними соответствии с ними соответствии с ними Б1.О.16, ОПК-3-У.1 Обучающийся не умеет Обучающийся слабо умеет Обучающийся умеет осуществлять Обучающийся умеет осуществлять осуществлять поиск современной осуществлять поиск поиск современной актуальной и поиск современной актуальной и современной актуальной и актуальной и достоверной достоверной информации о нормах достоверной информации о нормах информации о нормах достоверной информации о радиационной безопасности в радиационной безопасности в радиационной безопасности в нормах радиационной нормативных правовых актах в сфере нормативных правовых актах в агропромышленного комплекса для безопасности в нормативных нормативных правовых актах в сфере агропромышленного правовых актах в сфере сфере агропромышленного совершенствования комплекса для совершенствования агропромышленного комплекса комплекса для совершенствования профессиональной деятельности в профессиональной деятельности в для совершенствования профессиональной деятельности в соответствии с ними соответствии с ними профессиональной деятельности соответствии с ними в соответствии с ними Б1.О.16, ОПК-3-Н.1 Обучающийся с небольшими Обучающийся свободно владеет Обучающийся не владеет Обучающийся слабо владеет навыками поиска современной навыками поиска современной затруднениями владеет навыками навыками поиска современной актуальной и достоверной актуальной и достоверной актуальной и достоверной поиска современной актуальной и

достоверной информации о нормах

радиационной безопасности в

нормативных правовых актах в сфере

агропромышленного комплекса для

совершенствования

профессиональной деятельности в

соответствии с ними

информации о нормах радиационной

безопасности в нормативных

правовых актах в сфере

агропромышленного комплекса для

совершенствования

профессиональной деятельности в

соответствии с ними

информации о нормах

радиационной безопасности в

нормативных правовых актах в

сфере агропромышленного

комплекса для совершенствования

профессиональной деятельности в

соответствии с ними

информации о нормах радиационной безопасности в

нормативных правовых актах в сфере агропромышленного

комплекса для

совершенствования

профессиональной деятельности

в соответствии с ними

# 3.Типовые контрольные задания и (или) иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих сформированность компетенций в процессе освоения дисциплины

Типовые контрольные задания и материалы, необходимые для оценки знаний, умений и навыков, содержатся в учебно-методических разработках, приведенных ниже.

1. Кузьмина Л. Н. Ветеринарная радиобиология [Электронный ресурс]: методические рекомендации по организации и выполнению самостоятельной работы обучающихся по специальности 36.05.01 Ветеринария, направленность программы — Диагностика, лечение и профилактика болезней животных, уровень высшего образования специалитет, форма обучения: заочная / Л.Н. Кузьмина, Т.Т. Левицкая, Н.М. Колобкова — Троицк: Южно-Уральский ГАУ, 2020. — 33 с. Режимы доступа:

https://edu.sursau.ru/enrol/index.php?id=2867, http://nb.sursau.ru:8080/localdocs/ivm/00440.pdf.

- 2. Кузьмина Л. Н. Ветеринарная радиобиология [Электронный ресурс]: сборник задач для обучающихся по специальности 36.05.01 Ветеринария, направленность программы Диагностика, лечение и профилактика болезней животных, уровень высшего образования специалитет, форма обучения заочная / Т.Т. Левицкая, Л.Н. Кузьмина, Н.М. Колобкова Троицк: ФГБОУ ВО Южно-Уральский ГАУ, 2020. 36 с. Режимы доступа: <a href="https://edu.sursau.ru/enrol/index.php?id=2867">https://edu.sursau.ru/enrol/index.php?id=2867</a>, <a href="https://edu.sursau.ru/enrol/index.php?id=2867">https://edu.sursau.ru/enrol/index.php?id=2867</a>,
- 3. Кузьмина Л.Н. Ветеринарная радиобиология [Электронный ресурс]: методические указания к практическим занятиям для обучающихся по специальности 36.05.01 Ветеринария, направленность программы Диагностика, лечение и профилактика болезней животных, уровень высшего образования специалитет, форма обучения: заочная / Л. Н. Кузьмина, Т. Т. Левицкая, Н.М. Колобкова Троицк: ФГБОУ ВО Южно-Уральский ГАУ, 2020. 23 с. Режимы доступа: <a href="https://edu.sursau.ru/enrol/index.php?id=2867">https://edu.sursau.ru/enrol/index.php?id=2867</a>, <a href="https://edu.sursau.ru/enrol/index.php?id=2867">https://edu.sursau.ru/enrol/index.php?id=2867</a>, <a href="https://edu.sursau.ru/enrol/index.php?id=2867">https://edu.sursau.ru/enrol/index.php?id=2867</a>,

# 4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих сформированность компетенций

В данном разделе методические материалы, определяющие процедуры оценивания знаний, умений, навыков, характеризующих базовый этап формирования компетенций по дисциплине «Ветеринарная радиобиология», приведены применительно к каждому из используемых видов текущего контроля успеваемости и промежуточной аттестации обучающихся.

## 4.1.Оценочные средства для проведения текущего контроля успеваемости 4.1.1Устный опрос на практическом занятии

Опрос на практическом занятии используется для оценки качества освоения обучающимся основной профессиональной образовательной программы по отдельным вопросам и темам дисциплины. Темы и планы занятий (см. методическую разработку: Кузьмина Л.Н. Ветеринарная радиобиология [Электронный ресурс]: методические указания к практическим занятиям для обучающихся по специальности 36.05.01 Ветеринария, направленность программы – Диагностика, лечение и профилактика болезней животных, уровень высшего образования специалитет, форма обучения: заочная / Л. Н. Кузьмина, Т. Т. Левицкая, Н.М. Колобкова – Троицк: ФГБОУ ВО Южно-Уральский ГАУ, 2020. – 21 с. – Режимы доступа: <a href="https://edu.sursau.ru/enrol/index.php?id=2867">https://edu.sursau.ru:8080/localdocs/ivm/00441.pdf</a>) заранее сообщаются обучающимся.

Отдельные темы дисциплины вынесены на самостоятельное изучение. Вопросы,

вынесенные на самостоятельное изучение, входят в перечень вопросов к устному опросу. Темы, вынесенные на самостоятельное изучение, план подготовки представлены в методическом издании: Кузьмина Л. Н. Ветеринарная радиобиология [Электронный ресурс]: методические рекомендации по организации и выполнению самостоятельной работы обучающихся по специальности 36.05.01 Ветеринария, направленность программы — Диагностика, лечение и профилактика болезней животных, уровень высшего образования специалитет, форма обучения: заочная / Л.Н. Кузьмина, Т.Т. Левицкая, Н.М. Колобкова — Троицк: Южно-Уральский ГАУ, 2020. — 33с. Режимы доступа <a href="https://edu.sursau.ru/enrol/index.php?id=2867">https://edu.sursau.ru/enrol/index.php?id=2867</a>, <a href="https://edu.sursau.ru/enrol/index.php?id=2867">https://edu.sursau.ru/enrol/index.php?id=2867</a>, <a href="https://edu.sursau.ru/enrol/index.php?id=2867">https://edu.sursau.ru/enrol/index.php?id=2867</a>, <a href="https://edu.sursau.ru/enrol/index.php?id=2867">https://edu.sursau.ru/enrol/index.php?id=2867</a>, <a href="https://edu.sursau.ru/enrol/index.php?id=2867">https://edu.sursau.ru/enrol/index.php?id=2867</a>,

Ответ оценивается оценкой «отлично», «хорошо», «удовлетворительно» или неудовлетворительно».

|       |                                                                            | Код и наименование   |
|-------|----------------------------------------------------------------------------|----------------------|
| № п/п | Оценочные средства                                                         | индикатора           |
|       |                                                                            | компетенции          |
| 1     | Тема 1 «Радиоактивность. Характеристика ионизирующих излучений».           | ИД-1.УК-1            |
|       | 1 Дайте определение радиоактивности.                                       | Осуществляет поиск,  |
|       | 2 Что понимают под ионизирующими излучениями?                              | критический анализ и |
|       | 3 Что собой представляет процесс ионизации?                                | синтез информации,   |
|       | 4 Назовите электромагнитные ионизирующие излучения.                        | применяет системный  |
|       | 5 Назовите величины, характеризующие электромагнитные волны.               | подход для решения   |
|       | 6 Назовите корпускулярные ионизирующие излучения.                          | поставленных задач   |
|       | 7 Как ведут себя ионизирующие излучения в электромагнитном поле?           |                      |
|       | 8 Опишите различия в происхождении рентгеновского и гамма излучений.       |                      |
|       | 9 Чем объясняется низкая ионизирующая способность гамма-излучения?         | ИД-1. ОПК-2          |
|       | 10 Какие два общих свойства характеризуют ионизирующие излучения?          | Осуществляет         |
|       | 11 Какие типы ядерных превращений существуют?                              | интерпретацию и      |
|       | 12 Что происходит в результате альфа-распада?                              | анализ действия      |
|       | 13 В каких случаях происходит бета позитронный распад?                     | различных факторов   |
|       | 14 В чём суть ядерных реакций?                                             | на физиологическое   |
|       | 15 Встречаются ли в природе реакции синтеза?                               | состояние организма  |
|       | 16 Дайте понятие наведённой радиоактивности.                               | животных в           |
|       | 17 Дайте характеристику космическим лучам.                                 | профессиональной     |
|       | 18 Перечислите радиоактивные семейства.                                    | деятельности         |
|       | 19 Что такое искусственные радионуклиды?                                   |                      |
|       | 20 Дайте определение процессу аннигиляции.                                 |                      |
|       | 21 Какие элементарные частицы производят наведённую радиоактивность        |                      |
|       | 22 Дайте понятия закрытого и открытого источников ионизирующего            |                      |
|       | облучения.                                                                 |                      |
|       | 23 Дайте понятие внешнего и внутреннего облучения организма.               |                      |
|       | 24 Дайте понятие предельно допустимой дозе и пределу дозы облучения.       |                      |
|       | 25 Что называют критическим органом?                                       |                      |
|       | 26 Назовите наиболее уязвимую для облучения систему животного организма.   |                      |
|       | 27 Что подразумевают под радиочувствительностью?                           |                      |
|       | 28 С какой целью создаются ветеринарные и научно-производственные          |                      |
|       | лаборатории?                                                               | ИД-1. ОПК-3          |
|       | 29 Дайте определение минимально значимой активности.                       | Осуществляет поиск   |
|       | 30 На какие зоны разделяют помещения для работ 1 класса?                   | современной          |
|       | 31 Назовите требования к помещениям для работ 2-го и 3-го классов.         | актуальной и         |
|       | 32 Перечислите основные способы защиты при работе с источниками            | достоверной          |
|       | ионизирующего излучения.                                                   | информации о         |
|       | 33 В каких вариантах может быть использована защита временем?              | нормативных          |
|       | 34 Что может быть использовано в качестве поглотителей при работе с альфа- | правовых актах в     |
|       | , бета- и гамма-излучениями?                                               | сфере                |
|       | 35 Что строго запрещено по технике безопасности в радиологических          | агропромышленного    |
|       | лабораториях?                                                              | комплекса            |
|       | 36 Назовите основные принципы техники безопасности при работе с            | совершенствует,      |
|       | источниками ионизирующего излучения.                                       | профессиональную     |
|       | 37 Назовите средства индивидуальной защиты при работе с различными         | деятельность в       |
|       | видами радиоактивных веществ.                                              |                      |

|   | 38 Дайте оценку современной радиационной обстановки в нашей стране.                                          |                      |
|---|--------------------------------------------------------------------------------------------------------------|----------------------|
|   | 39 Перечислите основные нормативные документы и общие положения                                              |                      |
|   | радиационной безопасности.                                                                                   |                      |
|   | 40 Какие Вы знаете эффективные методы решения проблемы с захоронением                                        |                      |
|   | радиоактивных отходов                                                                                        |                      |
| 2 | Тема 2 «Дозиметрия ионизирующих излучений. Доза, виды доз, мощность                                          | ИД-1.УК-1            |
|   | дозы, единицы измерения. Расчёт доз внешнего и внутреннего облучения                                         | Осуществляет поиск,  |
|   | человека и животных. Решение задач по дозиметрии. Приборы и методы                                           | критический анализ и |
|   | дозиметрического контроля, их устройство и порядок работы с основными                                        | синтез информации,   |
|   | типами дозиметров (индивидуального и общего пользования)»                                                    | применяет системный  |
|   | 1. Что собой представляет экспозиционная доза?                                                               | подход для решения   |
|   | 2. Назовите единицы измерения экспозиционной дозы.                                                           | поставленных задач   |
|   |                                                                                                              | поставленных задач   |
|   | 3. Дайте определение поглощенной дозы, её единицы измерения и формулу                                        | ил тописа            |
|   | для её определения.                                                                                          | ИД-1. ОПК-2          |
|   | 4. Дайте определение дозиметру.                                                                              | Осуществляет         |
|   | 5. Что является основной составной частью индивидуального дозиметра?                                         | интерпретацию и      |
|   | 6. Как делят дозиметры по характеру применения?                                                              | анализ действия      |
|   | 7. Дайте характеристику дозиметров КИД-І и ИД-І.                                                             | различных факторов   |
|   |                                                                                                              | на физиологическое   |
|   | 8. Дайте определение эквивалентной дозы, формулу и единицы измерения.                                        | состояние организма  |
|   | 9. Дайте определение мощности дозы.                                                                          | животных в           |
|   | 10. Какие единицы измерения имеют мощности экспозиционной,                                                   | профессиональной     |
|   | поглощенной и эквивалентной доз?                                                                             | деятельности         |
|   |                                                                                                              |                      |
|   |                                                                                                              | ИД-1. ОПК-3          |
|   |                                                                                                              | Осуществляет поиск   |
|   | 11. Что показывает коэффициент качества излучения?                                                           | современной          |
|   | 12 Опишите принцип работы дозиметра ИФКУ-І.                                                                  | актуальной и         |
|   | 13 Опишите устройство дозиметров Мастер-I и Белла.                                                           | достоверной          |
|   | 14. Что такое предельно допустимая доза (ПДД)?                                                               | информации о         |
|   | 14. Что такое предельно допустимая доза (11дду: 15 Что такое предел годового поступления радионуклида (ПГП)? |                      |
|   |                                                                                                              | нормативных          |
|   | 16 Когда принимаются временно допустимые уровни (ВДУ)?                                                       | правовых актах в     |
|   |                                                                                                              | сфере                |
|   |                                                                                                              | агропромышленного    |
|   |                                                                                                              | комплекса            |
|   |                                                                                                              | совершенствует,      |
|   |                                                                                                              | профессиональную     |
|   |                                                                                                              | деятельность в       |
| 3 | Тема 3 «Методы обнаружения и регистрации ионизирующих излучений.                                             | ИД-1.УК-1            |
|   | Детекторы ионизирующих излучений, их устройство, принцип работы.                                             | Осуществляет поиск,  |
|   | Счётная характеристика детекторов. Радиометрия. Методы и приборы,                                            | критический анализ и |
|   | используемые для радиационной экспертизы объектов ветнадзора»                                                | синтез информации,   |
|   | 1 Какие существуют методы обнаружения и регистрации ионизирующего                                            | применяет системный  |
|   | излучения?                                                                                                   | подход для решения   |
|   | 2 Опишите принцип работы ионизационного и химического методов.                                               | поставленных задач   |
|   | 3 Опишите принцип работы фотографического и люминесцентного методов.                                         | ,                    |
|   |                                                                                                              | ИД-1. ОПК-2          |
|   |                                                                                                              | Осуществляет         |
|   | 5 Дайте определение радиометрии.                                                                             | интерпретацию и      |
|   | 6 Какие объекты ветеринарного надзора можно подвергнуть радиометрии?                                         | анализ действия      |
|   | 7 Дайте определение радиометрам.                                                                             | различных факторов   |
|   | Lo. 1                                                                                                        | на физиологическое   |
|   | l                                                                                                            |                      |
|   | калориметрического методов?                                                                                  | состояние организма  |
|   | 9Дайте определение детектору.                                                                                | животных в           |
|   | 10 Опишите принцип работы ионизационной камеры.                                                              | профессиональной     |
|   | 11 В чём различия в устройстве ионизационной камеры, пропорционального                                       | деятельности         |
|   | счётчика и газоразрядного счётчика?                                                                          | 1171 0777 0          |
|   |                                                                                                              | ИД-1. ОПК-3          |
|   |                                                                                                              | Осуществляет поиск   |
|   | 12 Что выражает счётная характеристика газового разряда?                                                     | современной          |
|   | 13 Опишите устройство радиометра ДП-100.                                                                     | актуальной и         |
|   | 14 Опишите порядок работы на радиометре ДП-100.                                                              | достоверной          |
|   | 15 Кокой детектор используется в радиометре Б-3?                                                             | информации о         |
|   |                                                                                                              |                      |

| 16 Для чего предназначен Бета-радиометр РКБ-4-1еМ? | нормативных       |
|----------------------------------------------------|-------------------|
|                                                    | правовых актах в  |
|                                                    | сфере             |
|                                                    | агропромышленного |
|                                                    | комплекса         |
|                                                    | совершенствует,   |
|                                                    | профессиональную  |
|                                                    | деятельность в    |

Критерии оценки ответа (табл.) доводятся до сведения обучающихся в начале занятий. Оценка объявляется обучающемуся непосредственно после ответа.

| Критерии оценивания                                                                                                                                 |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| - обучающийся полно усвоил учебный материал;                                                                                                        |  |  |
| - показывает знание основных понятий темы, грамотно пользуется                                                                                      |  |  |
| терминологией;                                                                                                                                      |  |  |
| - проявляет умение анализировать и обобщать информацию, навыки связного                                                                             |  |  |
| описания явлений и процессов;                                                                                                                       |  |  |
| - демонстрирует умение излагать учебный материал в определенной логической                                                                          |  |  |
| последовательности;                                                                                                                                 |  |  |
| - показывает умение иллюстрировать теоретические положения конкретными                                                                              |  |  |
| примерами;                                                                                                                                          |  |  |
| - демонстрирует сформированность и устойчивость знаний, умений и навыков;                                                                           |  |  |
| - могут быть допущены одна-две неточности при освещении второстепенных                                                                              |  |  |
| вопросов                                                                                                                                            |  |  |
| ответ удовлетворяет в основном требованиям на оценку «5», но при этом имеет                                                                         |  |  |
| место один из недостатков:                                                                                                                          |  |  |
| - в усвоении учебного материала допущены небольшие пробелы, не исказившие                                                                           |  |  |
| содержание ответа;                                                                                                                                  |  |  |
| - в изложении материала допущены незначительные неточности                                                                                          |  |  |
| - неполно или непоследовательно раскрыто содержание материала, но показано                                                                          |  |  |
| общее понимание вопроса и продемонстрированы умения, достаточные для                                                                                |  |  |
| дальнейшего усвоения материала;                                                                                                                     |  |  |
| - имелись затруднения или допущены ошибки в определении понятий,                                                                                    |  |  |
| использовании терминологии, описании явлений и процессов, исправленные                                                                              |  |  |
| после наводящих вопросов;                                                                                                                           |  |  |
| - выявлена недостаточная сформированность знаний, умений и навыков,                                                                                 |  |  |
| обучающийся не может применить теорию в новой ситуации                                                                                              |  |  |
| - не раскрыто основное содержание учебного материала;                                                                                               |  |  |
| - обнаружено незнание или непонимание большей или наиболее важной части                                                                             |  |  |
| учебного материала; - допущены ошибки в определении понятий, при использовании терминологии,                                                        |  |  |
| - допущены ошиоки в определении понятии, при использовании терминологии, в описании явлений и процессов, решении задач, которые не исправлены после |  |  |
| в описании явлении и процессов, решении задач, которые не исправлены после нескольких наводящих вопросов;                                           |  |  |
| <ul> <li>не сформированы компетенции, отсутствуют соответствующие знания, умения</li> </ul>                                                         |  |  |
| - ne equipminpubiliti numiferentini, orey ferbyror course religiound Shahin, y menin                                                                |  |  |
|                                                                                                                                                     |  |  |

#### 4.1.2 Оценка выполнения практического задания на занятии

Выполнение практических заданий на практических занятиях используется в рамках контекстного обучения, ориентировано на профессиональную подготовку обучающихся и реализуемое посредством системного использования профессионального контекста, постепенного насыщения учебного процесса элементами профессиональной деятельности.

Содержание и форма выполнения практического задания приводится в методических указаниях к практическому занятию: Кузьмина Л.Н. Ветеринарная радиобиология [Электронный ресурс]: методические указания к практическим занятиям для обучающихся по специальности 36.05.01 Ветеринария, направленность программы — Диагностика, лечение и профилактика болезней животных, уровень высшего образования специалитет, форма обучения: заочная / Л. Н. Кузьмина, Т. Т. Левицкая, Н.М. Колобкова — Троицк: ФГБОУ ВО Южно-Уральский ГАУ, 2020. — 21 с. — Режимы доступа: <a href="https://edu.sursau.ru/enrol/index.php?id=2867">https://edu.sursau.ru/enrol/index.php?id=2867</a>, <a href="https://nb.sursau.ru/s080/localdocs/ivm/00441.pdf">https://nb.sursau.ru/s080/localdocs/ivm/00441.pdf</a>.

Выполнение практических заданий используется для оценки качества освоения

обучающимся образовательной программы по отдельным темам дисциплины, оценивается оценкой «зачтено» или «не зачтено».

| № п/п | Оценочные средства                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Код и наименование индикатора компетенции                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Тема         1         «Радиоактивность.         Характеристика ионизирующих излучений»           Практическое задание 1: Оформить словарь терминов по изучаемой теме.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ИД-1.УК-1 Осуществляет поиск, критический анализ и синтез информации, применяет системный подход для решения поставленных задач                                                                                                                                                                                                                                                                                                                                               |
|       | Практическое задание 2: Нарисовать в рабочей тетради схему разделения ионизирующего излучения в магнитном поле.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ИД-1. ОПК-2 Осуществляет интерпретацию и анализ действия различных факторов на физиологическое состояние организма животных в профессиональной ИД-1. ОПК-3                                                                                                                                                                                                                                                                                                                    |
|       | <b>Практическое задание 3:</b> Обобщить теоретический материал по физической характеристике ионизирующих излучений в виде таблицы.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Осуществляет поиск современной актуальной и достоверной информации о нормативных правовых актах в сфере агропромышленного комплекса совершенствует, профессиональную деятельность в                                                                                                                                                                                                                                                                                           |
| 2     | Тема 2 «Дозиметрия ионизирующих излучений. Доза, виды доз, мощность дозы, единицы измерения. Расчёт доз внешнего и внутреннего облучения человека и животных. Решение задач по дозиметрии. Приборы и методы дозиметрического контроля, их устройство и порядок работы с основными типами дозиметров (индивидуального и общего пользования)» Практическое задание 1: Оформить словарь терминов по теме Практическое задание 2: Изучить устройство дозиметра гамма-излучения ДКГ-08А. Сделать краткое описание в тетради.  Практическое задание 3: Измерить естественный радиационный фон в помещениях института ветеринарной медицины.  Практическое задание № 4: Решить задачи на определение доз ионизирующих излучений. | ИД-1.УК-1 Осуществляет поиск, критический анализ и синтез информации, применяет системный подход для решения поставленных задач  ИД-1. ОПК-2 Осуществляет интерпретацию и анализ действия различных факторов на физиологическое состояние организма животных в профессиональной деятельности ИД-1. ОПК-3 Осуществляет поиск современной актуальной и достоверной информации о нормативных правовых актах в сфере агропромышленного комплекса совершенствует, профессиональную |
| 3     | Тема 3 «Методы обнаружения и регистрации ионизирующих излучений. Детекторы ионизирующих излучений, их устройство, принцип работы. Счётная характеристика детекторов. Радиометрия. Методы и приборы, используемые для радиационной экспертизы объектов ветнадзора»  Практическое задание 1: Оформить словарь терминов по изучаемой теме.                                                                                                                                                                                                                                                                                                                                                                                   | деятельность в  ИД-1.УК-1 Осуществляет поиск, критический анализ и синтез информации, применяет системный подход для решения поставленных задач  ИД-1. ОПК-2 Осуществляет интерпретацию и анализ                                                                                                                                                                                                                                                                              |
|       | Практическое задание 2: Построить графики зависимости скорости счёта от напряжения.  Практическое задание 3: Решить задачи на определение радиоактивности проб.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | действия различных факторов на физиологическое состояние организма животных в профессиональной деятельности ИД-1. ОПК-3 Осуществляет поиск современной актуальной и достоверной информации о нормативных правовых актах в сфере агропромышленного комплекса                                                                                                                                                                                                                   |

|  | совершенствует, профессиональную деятельность в |
|--|-------------------------------------------------|
|  |                                                 |

Критерии оценки выполнения практических заданий (табл.) доводятся до сведения обучающихся в начале занятия. Оценка объявляется обучающемуся непосредственно после проверки выполненного практического задания.

| Шкала      | Критерии оценивания                                                                                                                                                                                                                                                                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Зачтено    | <ul> <li>полностью усвоен учебный материал, или в пределах дисциплины</li> <li>практическое здание выполнено в полном объёме, могут быть допущены несущественные ошибки;</li> <li>продемонстрировано правильное решение, но допущены недочёты;</li> <li>продемонстрированы затруднения при формулировании выводов и пояснении выполненного задания;</li> </ul>                 |
| Не зачтено | <ul> <li>правильно выполнен анализ, сделаны выводы</li> <li>- материал усвоен не в полном объёме;</li> <li>практическое задание выполнено наполовину, нарушена последовательность выполнения задания; выполнено несколько разрозненных действий задания верно, но они не образуют правильную логическую цепочку;</li> <li>- допущены отдельные существенные ошибки;</li> </ul> |
|            | - отсутствует аргументация при выполнении задания                                                                                                                                                                                                                                                                                                                              |

#### 4.1.3 Решение задач

Решение задач используется для оценки качества освоения обучающимся образовательной программы по отдельным темам или разделам дисциплины. Обучающимся выдаются индивидуальные задания, которые они самостоятельно выполняют в письменном виде. Результат оценивается оценкой «отлично», «хорошо», «удовлетворительно» или «неудовлетворительно». Примерные задачи для самостоятельного решения и методика их расчёта представлены в сборнике задач: Кузьмина Л. Н. Ветеринарная радиобиология [Электронный ресурс]: сборник задач для обучающихся по специальности 36.05.01 Ветеринария, направленность программы – Диагностика, лечение и профилактика болезней животных, уровень высшего образования специалитет, форма обучения заочная / Т.Т. Левицкая, Л.Н. Кузьмина, Н.М. Колобкова – Троицк: ФГБОУ ВО Южно-Уральский ГАУ, 2020. 36 https://edu.sursau.ru/course/view.php?id=2867, C. Режимы доступа: http://nb.sursau.ru:8080/localdocs/ivm/00442.pdf.

|       | _                                                                            | Код и наименование   |
|-------|------------------------------------------------------------------------------|----------------------|
| № п/п | Оценочные средства                                                           | индикатора           |
|       |                                                                              | компетенции          |
|       | Для изучения функции щитовидной железы поступил 125I в количестве 5          | ИД-1.УК-1            |
| 1     | мКи. Определить какова была его активность 15 дней тому назад, и сколько     | Осуществляет поиск,  |
|       | этого радиоизотопа останется через 45 дней, 2 месяца и 12 месяцев. Т=60 сут. | критический анализ и |
|       | На сегодняшний день активность 1311 составляет 5 мКи. Определить сколько     | синтез информации,   |
| 2     | этого радиоизотопа было 2 месяца тому назад, и какова будет его активность   | применяет системный  |
|       | через 4 дня, 20 дней и 2 месяца. Т=8,06 сут.                                 | подход для решения   |
|       | Пастбищный корм загрязнён 127Te в количестве 0,5 мКu/кг. Определить          | поставленных задач   |
| 3     | сколько его было в корме 3 часа и сутки тому назад, а также, сколько         |                      |
|       | останется этого радиоизотопа через 10 часов и 27 часов. Т=9,3 часа.          | ИД-1. ОПК-2          |
|       | В колхозе имеется комбикорм, загрязнённый 134Cs в количестве 1,5 мкКu/кг.    | Осуществляет         |
|       | Определить сколько в комбикорме было Cs 2 месяца тому назад, и сколько       | интерпретацию и      |
| 4     | его останется через 5 месяцев, 1 год и 2 года. Когда этот комбикорм можно    | анализ действия      |
|       | будет скармливать мясным животным (ПДУ загрязнения комбикорма 0,8 х          | различных факторов   |
|       | 10-6 Ки/кг). Т=2года.                                                        | на физиологическое   |
| 5     | При закладке силоса зелёная масса травы была загрязнена 1311 в количестве    | состояние организма  |
|       | 40 мкКи/кг. Определить сколько этого радиоизотопа было 12 дней и 15 дней     | животных в           |
|       | тому назад, и сколько его останется в силосе через 6 дней и 1 месяц. Т= 8,06 | профессиональной     |
|       | сут.                                                                         | деятельности         |

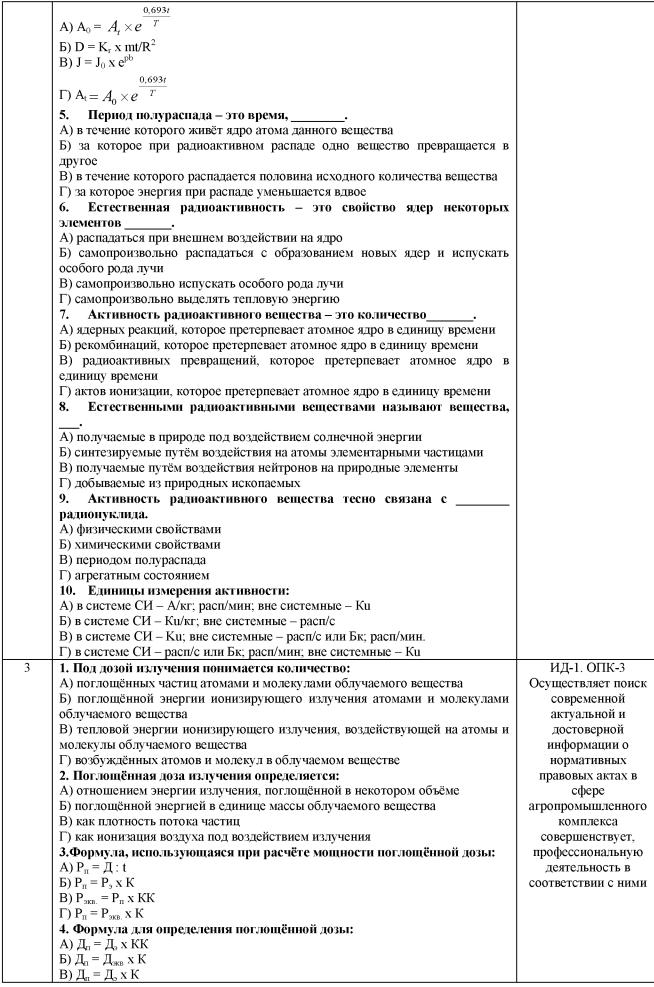
|     | Баранина загрязнена 42К в количестве 10 мкКи/кг. Какова степень                                                                                    |                           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 6   | загрязнения мяса была 15 суток и 1 месяц тому назад и сколько его останется                                                                        |                           |
|     | в мясе через 39 часов и 4 суток. T=12, 3 часа.                                                                                                     |                           |
| 7   | Зерновой корм загрязнён 210Ро в количестве 65 мкКи/кг. Определить сколько                                                                          | ИД-1. ОПК-3               |
| '   | этого радиоизотопа было 20 дней и 1 месяц тому назад, а также, какова будет загрязнённость корма через 280 дней и 1,5 года. Т=139 суток.           | Осуществляет поиск        |
|     | На складе хранится 10 ц овечьей шерсти, загрязнённой 135S в количестве 100                                                                         | современной               |
| 8   | мКи. Определить сколько в шерсти было радиосеры 36 часов и 18 дней тому                                                                            | актуальной и              |
|     | назад и сколько её останется через 6 месяцев и 218 дней. Т=87,4 суток.                                                                             | достоверной               |
|     | На сегодняшний день загрязнение грубого корма 140Ва составляет 12                                                                                  | информации о              |
| 9   | мкКи/кг. Определить сколько было радиобария в корме 2 недели тому назад, и                                                                         | нормативных               |
|     | сколького его останется через 7 суток, 3 недели и 1,5 месяца. Т=13 суток.                                                                          | правовых актах в<br>сфере |
| 10  | На сегодняшний день активность 32P составляет 100 Кu. Определить сколько этого изотопа было 10 дней и 3 недели тому назад, и сколько его останется | агропромышленного         |
| 10  | через 72 часа и 3 месяца. Т= 14,3 суток.                                                                                                           | комплекса                 |
|     | Радиоактивный эталон 137Cs на 1 января 2008 года имеет активность 1600 Бк.                                                                         | совершенствует,           |
| 11  | Определить чему была равна активность эталона 5 месяцев и 3 года тому                                                                              | профессиональную          |
| 11  | назад и чему она будет равна через18 месяцев и 15 лет. Т=30 лет.                                                                                   | деятельность в            |
|     | D 1 40                                                                                                                                             |                           |
|     | Во фляге 40 л молока, которое загрязнено 24Na в количестве 19800 Бк. Определить сколько радиоактивного натрия в молоке было 3 часа и сутки         |                           |
| 12  | тому назад, и сколько его останется через 3,5 часа и 6 часов. Можно ли его                                                                         |                           |
|     | использовать в пищу людям (ПДУ загрязнения молока 375 Бк/л). Т=15 часов.                                                                           |                           |
|     | Для диагностических исследований получено радиоактивный изотоп 59Fe в                                                                              |                           |
| 13  | количестве 2 мКи. Определить сколько останется этого изотопа через 15 дней,                                                                        |                           |
|     | 3 месяца и 1 год, и сколько его было 36 часов тому назад. Т= 44,5 суток                                                                            |                           |
|     | Туша говяжьего мяса массой 233 кг загрязнена 134Cs в количестве 26,5 мкКи.                                                                         |                           |
| 14  | Определить сколько радиоцезия было в мясе 30 дней тому назад, и сколько его останется через 8 месяцев, 14 месяцев и 2 года. Через какое время это  |                           |
| 1 4 | мясо можно будет использовать без ограничения в пищу людям (ПДУ                                                                                    |                           |
|     | загрязнения месяц 8 х 10-8 Ки/кг)? Т=2 года.                                                                                                       |                           |
|     | Радиоактивный эталон, изготовленный из 60Со, имеет на сегодняшний день                                                                             |                           |
| 15  | активность 18000 расп./мин. Определить, какова была его активность 24                                                                              |                           |
|     | месяца тому назад и чему она будет равная через 6 месяцев, 5 лет и 6,5 лет.                                                                        |                           |
|     | Т=5,3 года.  На сегодняшний день загрязнение зернового корма 106Ru составляет 18 мКи.                                                              |                           |
| 16  | Определить сколько этого радиоизотопа было 2 месяца и 1 год тому назад и                                                                           |                           |
|     | ,сколько его останется через 15 суток и 6 месяцев. Т=2 года.                                                                                       |                           |
|     | Имеется радиоизотоп 60Со в количестве 50 мКи. Определить сколько                                                                                   |                           |
| 17  | останется этого радиоизотопа через 4 месяца, 1,5 года и 9 лет и сколько его                                                                        |                           |
|     | было 18 месяцев тому назад. Т=5,3 года.                                                                                                            |                           |
|     | В хозяйстве имеется 5 ц сена, загрязнённого 131I в количестве 20 мКи. Определить сколько этого радиоизотопа было в корме 24 часа тому назад, и     |                           |
|     | сколько его останется через 0,5 месяца, 18 суток и 32 дня. Можно ли будет                                                                          |                           |
| 18  | скармливать его мясному и молочному скоту и в каком количестве (ПДУ                                                                                |                           |
|     | загрязнения в суточном рационе: для молочных коров – 4 мкКи/кг; для                                                                                |                           |
|     | мясных – 10 мкКи/кг). Т=8,06 суток.                                                                                                                |                           |
| 10  | Солома загрязнена 32Р в количестве 78 мкКи/кг. Определить сколько его                                                                              |                           |
| 19  | было в соломе 7 дней и 2 месяца тому назад, а также сколько будет через 1 месяц и 115 дней. Т=14,3 суток.                                          |                           |
|     | Комбикорм загрязнён 143Се в количестве 500 мкКи/кг. Определить сколько                                                                             |                           |
|     | было церия в корме 1 сутки и 2 недели тому назад, и сколько его останется                                                                          |                           |
| 20  | через 0,5 месяца и 20 суток. Когда этот комбикорм можно будет скармливать                                                                          |                           |
|     | мясным животным (ПДУ загрязнения комбикорма 0,8 х 10-8 Ки/кг)? Т=33,4                                                                              |                           |
|     | uaca.                                                                                                                                              |                           |
| 21  | Радиоактивный Cs на сегодняшний день имеет активность 1 мKu. Определить чему была равна активность 6 месяцев тому назад, а также, какова будет     |                           |
| 41  | активность через 18 месяцев, 6,5 лет и 15 лет. Т=30 лет.                                                                                           |                           |
|     | При закладке силоса зелёная масса травы была загрязнена 124Sb в количестве                                                                         |                           |
| 22  | 3 мкКи/кг. Определить какова была активность радиоизотопа 10 суток тому                                                                            |                           |
| 22  | назад и сколько его останется в силосе через 2 недели, 0,5 года и 10 месяцев.                                                                      |                           |
|     | Т= 60,1 суток.                                                                                                                                     |                           |

| 23 | Имеется радиоизтоп 82Br активностью 1000 Бк. Рассчитать какова была его активность 1,5 месяца тому назад и сколько его останется через 90 часов, 6 суток и 12 суток. Т=36 часов.                                                                                                                                   |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 24 | Загрязнение 45Са сгущенного молока составляет 0,5 мкКu/кг. Определить сколько радиокальция было в молоке 1 месяц тому назад, и сколько его останется через 79 дней, 11 месяцев и 2 года. Когда это молоко можно будет использовать в пищу людям (ПДУ загрязнения сгущенного молока 3 х 10-8 мкКu/кг). Т=163 суток. |  |
| 25 | Для лечения больных поступил радиоактивный изотоп 198Au в количестве 0,1 мКu. Сколько этого радиоизотопа было 5 суток тому назад и сколько его останется через 26 часов, 4 суток и 8 суток. Т=64 часа.                                                                                                             |  |
| 26 | На 1 июля 2008 года активность 125I составила 25 мКи. Вычислить сколько его было 36 часов и 2 месяца тому назад и сколько его будет 1 октября 2008 года и 1 января 2009 года. Т=60 суток.                                                                                                                          |  |
| 27 | Для исследований поступил радиоактивный изотоп 198Au в количестве 10 мКu. Какова была его активность 1,5 месяца тому назад и сколько останется этого радиоизотопа через 26 часов, 10 суток и 1 месяц. Т=64 часа.                                                                                                   |  |
| 28 | Активность радиоизотопа 60Co составляет 70 мКu. Определить сколько этого радиоизотопа было 6 месяцев и 2 года тому назад и сколько его останется через 90 дней и 10 лет. Т=5,3 года.                                                                                                                               |  |
| 29 | На сегодняшний день активность 131I составляет 65 мКu. Определить сколько этого изотопа останется через 120 часов и 56 суток, а также сколько его было 15 дней и 3 месяца тому назад. Т=8,06 суток.                                                                                                                |  |
| 30 | Имеется радиоизотоп 82Br, его активность 700 Бк. Рассчитать какова будет его активность через сутки, 72 часа и 10 суток, а также какова была его активность 5 суток тому назад. Т=36 часов.                                                                                                                        |  |
| 31 | Определить величину экспозиционной дозы в единицах системы СИ, если в 1 см3 воздуха при н.у. образуется следующее количество пар ионов: 1. 2,08x109 2. 0,26x107 3. 3,28x104 4. 0,52x103                                                                                                                            |  |
| 32 | Вычислит суммарную эквивалентную дозу, полученную биологическим объектом от смешанного источника излучения, если поглощённые дозы составили: от $\gamma$ -излучения — 15 рад, $\alpha$ -излучения — 5 рад, от быстрых $n-2$ Гр и от $\beta$ -излучения — 10 рад.                                                   |  |
| 33 | Рассчитать экспозиционную дозу во внесистемных единицах, если поглощённая доза, полученная коровой, равна: 1. 13 Гр 2. 120 мкрад 3. 340 сГр 4. 650 пГр                                                                                                                                                             |  |
| 34 | Определить величину поглощённой дозы $\gamma$ -излучения в единицах СИ, если в 1 см3 воздуха при н.у. образуется следующее количество пар ионов: 1. 0,52x106 2. 6,24x1010 3. 8,32x1011                                                                                                                             |  |
| 35 | Рассчитать эквивалентную дозу в Зв, полученную биологическим объектом при α-облучении, если поглощённая доза равна: 1. 1000 рад 2. 0,4 крад 3. 35 мГр 4. 0,25 Мрад                                                                                                                                                 |  |
| 36 | Определить мощность поглощенной дозы рентгеновского излучения для биологического объекта во внесистемных единицах, если мощность экспозиционной дозы равна:  1. 15 R/ч 2. 2 кR/ч 3. 50 A/кг 4. 7 MA/кг                                                                                                             |  |
| 37 | Определить величину экспозиционной дозы γ-излучения во внесистемных единицах, если в 1 см3 воздуха при н.у. образуется следующее количество пар ионов:  1. 7,28x1015  2. 0,52x109  3. 3,16x103  4. 0,26x106                                                                                                        |  |
| 38 | Определить экспозиционную дозу для воздушной среды в единицах СИ, если поглощенная доза равна:  1. 25 рад 2. 3 кГр 3. 128 мкрад 4. 1200 Град                                                                                                                                                                       |  |
| 39 | Рассчитать эквивалентную дозу в бэр, полученную животным при облучении быстрыми нейтронами, если поглощённая доза составила:  1. 3,7 Мрад 2. 4 кГр 3. 25 мГр 4. 49 сГр                                                                                                                                             |  |
| 40 | Рассчитать γ-фон в R/ч, если мощность экспозиционной дозы равна: 1. 1,29x10-3 A/кг 2. 7,74x106 A/кг 3. 2,58x109 A/кг                                                                                                                                                                                               |  |

| Определить количество пари нонов (п.н.), образующихся в 1 см3 воздуха при и.у., если при меследовании желудка собаки экспозиционная доза реитгеновских дучей была равиа:  1.3,35×10-8 Кл/кг  2.1,55×10-2 К 3.5,16×10-5 Кл/кг  Определить поглошенную дозу в радах, полученную человеком при облучении реитгеновскими лучами, если она составила:  1.0,5 Гр 2.300 мГр 3.1,25 ПГр  Рассчитать мощность эквивалентной дозы в системе СИ, создаваемую излучением медленных нейтронов в билогическом объекте, если мощность поглошенной дозы равна:  1. 25 мГр/ч 2.4 крад/ч 3.170 сГр/ч  Рассчитать мощность эквивалентной дозы в системе СИ, создаваемую излучением медленных нейтронов в билогическом объекте, если мощность поглошенной дозы доза составила:  1. 25 мГр/ч 2.4 крад/ч 3.170 сГр/ч  Рассчитать мошность эквивалентной дозы о-излучения для возлучной составила:  1. 2,06×102 R/ч 2.7.74×10-5 А/кг 3.9,03×104 А/кг  Определить число пар нонов, образующихся в 1 см3 воздуха, образующихся при н.у., если при облучении растений у-лучами, поглошенная доза составила:  1. 40×107 Гр 3.2 м мрад 3.280 нГр  Определить экспозиционную дозу в рентгенах, создаваемую при реитгеновдиатностике огнуюлы уживотного, если она равна:  1. 1.03×10-5 Кл/кг 2. 12.29×105 Кл/кг 3.6,45×102 Кл/кг  Определить уровень радиации на местности в R/ч, если мошность поглошённой дозы равна:  1. 50 Гр/ч 2. 18 мкГр/ч 3.37 рад/ч  Вычислить поглошённую дозу в единицах СИ, если при облучении животного билотическим объектом при облучении быстрыми нейтронами, если поглошённая доза равна:  1. 50 Гр/ч 2. 47 кГр 3. 13 Мрад  Определить эквивалентную дозу во виссистемных единицах СИ, создаваемую рентгеновским излучением в биолотическом объекте, если поглошённая доза равна:  1. 1.7 Гр 2. 100 мрад 3. 3 Мрад  Определить выспозиционной дозы в единицах СИ, создаваемую рентгеновским излучением в биолотическом объекте, если поглошённая доза равна:  1. 1.235 мК/ч 2. 75 мК/ч 3. 29 МА/кг  Вычислить поглошённую дозу во виссистемных единицах, би, создаваемую оределить поглошённую дозу в единицах СИ при рент |    |                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0,5 гр   2.300 мГр   3.1.25 ПГр   2.300 мГр   2.300 мГр   3.1.25 ПГр   2.300 мГр   3.1.25 ПГр   2.300 мГр   2.300 мГр   2.4 крад/ч   3.170 сГр/ч   2.5 мГр/ч   2.7,74×10-5 А/кг   3.9,03×104 А/кг   3.60×102 К/ч   2.7,74×10-5 А/кг   3.9,03×104 А/кг   3.60×102 К/ч   2.1 мгд   | 41 | н.у., если при исследовании желудка собаки экспозиционная доза рентгеновских лучей была равна: 1. 3,35х10-8 Кл/кг 2. 1,55х102 R 3. 5,16х10-5 Кл/кг                   |
| назучением медленных нейтронов в биологическом объекте, если мощность поглощённой дозы равна:  1. 25 мГр/ч 2. 4 крал/ч 3. 170 сГр/ч Рассчитать мощность эквивалентной дозы α-изгучения для воздушной среды во внесистемных единицах, если мощность экспозиционной дозы составила:  1. 20 обх102 R/ч 2. 7,74х10-5 A/кг 3. 9,03х104 A/кг  Определить число пар нонов, образующихся в 1 см3 воздуха, образующихся при ну., если при облучении растений у-лучами, поглощённая доза составила:  1. 40х107 Гр 2. 8 Мрад 3. 280 нГр  Определить экспозиционную дозу в ренттенах, создаваемую при ренттенодиагностике опухоли у животного, если она равна:  1. 1. 0,3х10-5 Кг/кг 2. 12,2ум105 Кг/кг 3. 6,45х102 Кг/кг  Определить уровень радиации на местности в R/ч, если мощность поглощённой дозы равна:  1. 50 Гр/ч 2. 18 мкГр/ч 3. 3. 7 рад/ч  Вычислить поглощённую дозу в единицах СИ, если при облучении животного фионов:  1. 0,52х109 2. 4.16х1010 3. 8,32х1013  Рассчитать эквивалентную дозу во внесистемных единицах, полученную биологическим объектом при облучении быстрыми нейтронами, если поглощённая доза равна:  1. 20 сГр 2. 47 кГр 3. 13 Мрад  Определить экспозиционную дозу в единицах СИ, создаваемую ренттеновским излучением в биологическом объекте, если поглощённая доза равна:  1. 17 Гр 2. 100 мрад 3. 139 срад  Определить величину экспозиционной дозы в единицах СИ, создаваемую ренттеновским излучением в биологическом объекте, если поглощённая доза равна:  1. 1. 37 N103 2. 5,28х1012 3. 4,16х1015  Определить величину экспозиционной дозы в единицах СИ, создаваемую ренттеновским излучением, если в 1см3 воздуха при н.у. образуется следующее количество пар ионов:  1. 1. 37 N103 2. 5,28х1012 3. 4,16х1015  Определить величину экспозиционной дозы в единицах СИ, создаваемую ренттеновским излучением, если в 1см3 воздуха при н.у. образуется следующее количество пор ионов:  1. 23 мкР/ч 2. 75 мкР/ч 3. 29 мА/кг  Вычислить поглощённую дозу во внесистемных единицах СИ, создаваемую рентисновной в биологическом объекте, если мощность экспозиционной дозы у-излучения в е | 42 | облучении рентгеновскими лучами, если она составила: 1. 0,5 Гр 2. 300 мГр 3. 1,25 ПГр                                                                                |
| 80 внесистемных единицах, если мощность экспозиционной дозы составила: 1. 2,06х102 R/ч 2. 7,74х10-5 A/кг 3. 9,03х104 A/кг 3. 9,03х104 A/кг  Определить число пар ионов, образующихся в 1 см3 воздуха, образующихся при и.у., если при облучении растений у-лучами, поглощёния доза составила: 1. 40х107 Гр 2. 8 Мрад 3. 280 нГр  Определить экспозиционную дозу в рентгенах, создаваемую при рентгенодиагностике опухоли уживотного, если она равна: 1. 10,3х10-5 Кл/кг 2. 12,29х105 Кл/кг 3. 6,45х102 Кл/кг Определить уровень радиации на местности в R/ч, если мощность поглощённой дозы равна: 1. 50 Гр/ч 2. 18 мкГр/ч 3. 37 рад/ч  Вычислить поглощённую дозу в единицах СИ, если при облучении животного β-излучением при н.у. в 1 см3 воздуха образуется следующее количество пар нонов: 1. 0,52х109 2. 4,16х1010 3. 8,32х1013  Рассчитать эквивалентную дозу во внесистемных сдиницах, полученную биологическим объектом при облучении быстрыми нейтронами, если поглощённая доза равна: 1. 20 сГр 2. 47 кГр 3. 13 Мрад Определить экспозиционной дозы в единицах СИ, создаваемую рентгеновским излучением в биологическом объекте, если поглощённая доза равна: 1. 17 Гр 2. 100 мрад 3. 139 срад Определить величину экспозиционной дозы в единицах СИ, создаваемую рентгеновским излучением, если в 1см3 воздуха при н.у. образуется следующее количество пар нонов: 1. 1,37х103 2. 5,28х1012 3. 4,16х1015 Определить мощность эквивалентной дозы у-излучения в единицах СИ, создаваемой в биологическом объекте, если мощность экспозиционной дозы составила: 1. 235 мкR/ч 2. 75 мR/ч 3. 29 мA/кг  Вычислить поглощённую дозу во внесистемных сдиницах, образующуюся при облучении водной среды, если она составила: 1. 800 пГр 2. 32 сГр 3. 99 кГр Рассчитать мощность поглощённой дозы в единицах СИ, если мощность экспозиционной дозы у-излучения СИ, если мощность экспозиционной дозы в единицах СИ, если мощность экспозиционной дозы в единицах СИ, если мощность экспозиционной дозы в единицах СИ, если мощность обложения микроорганизмов, если она составила: 1. 1.29 мR/ч 2. 7,26 мкR/ч 3. 3,98 гГр  | 43 | излучением медленных нейтронов в биологическом объекте, если мощность поглощённой дозы равна: 1. 25 мГр/ч 2. 4 крад/ч 3. 170 сГр/ч                                   |
| 1. 40х107 Гр 2. 8 Мрад 3. 280 нГр  Определить экспозиционную дозу в ренттенах, создаваемую при рентгенодиагностике опухоли уживотного, если она равна:  1. 10,3х10-5 Кл/кг 2. 12,2ух105 Кл/кг 3. 6,45х102 Кл/кг  Определить уровень радиации на местности в R/ч, если мощность поглощённой дозы равна:  1. 50 Гр/ч 2. 18 мкГр/ч 3. 37 рад/ч  Вычислить поглощённую дозу в единицах СИ, если при облучении животного β-излучением при н.у. в 1 см3 воздуха образуется следующее количество пар нонов:  1. 0,52х109 2. 4,16х1010 3. 8,32х1013  Рассчитать эквивалентную дозу во внесистемных единицах, полученную биологическим объектом при облучении быстрыми нейтронами, если поглощённая доза равна:  1. 20 сГр 2. 47 кГр 3. 13 Мрад  Определить экспозиционную дозу в единицах СИ, создаваемую ренттеновским излучением в биологическом объекте, если поглощённая доза равна:  1. 1. 17 Гр 2. 100 мрад 3. 139 срад  Определить величину экспозиционной дозы в единицах СИ, создаваемую ренттеновским излучением, если в 1 см3 воздуха при н.у. образуется следующее количество пар нонов:  1. 1. 137103 2. 5,28х1012 3. 4,16х1015  Определить мощность эквивалентной дозы в единицах СИ, создаваемой в биологическом объекте, если мощность экспозиционной дозы следующее количество пар нонов:  1. 235 мкR/ч 2. 75 мR/ч 3. 29 МА/кг  Вычислить поглощённую дозу во внесистемных единицах, образующуюся при облучении водной среды, если она составила:  1. 235 мкR/ч 2. 75 мR/ч 3. 99 кГр  Рассчитать мощность поглощённой дозы в единицах СИ, если мощность экспозиционной дозы γ-излучения, создаваемой в биологическом объекте, равна:  1. 1,29 мR/ч 2. 7,26 мкR/ч 3. 17,9х10-4 A/кг  Определить поглощённую дозу ве внеитемнях СИ при ренттеновском объекте, равна:  1. 1,29 мR/ч 2. 7,26 мкR/ч 3. 17,9х10-4 A/кг  Определить поглощённую дозу в СИ, полученную организмом при облучении маспренными нейтронами, если окпозиционная доза равна:  1. 26 Кг/кг 2. 281 мR 3. 39х10-2 Кл/кг                                                                                                                              | 44 | во внесистемных единицах, если мощность экспозиционной дозы составила:                                                                                               |
| 1.10,3х10-5 Кл/кг   2.12,29х105 Кл/кг   3.6,45х102 Кл/кг     1.10,3х10-5 Кл/кг   2.12,29х105 Кл/кг   3.6,45х102 Кл/кг     1.10,3х10-5 Кл/кг   2.12,29х105 Кл/кг   3.6,45х102 Кл/кг     1.50 Гр/ч   2.18 мкГр/ч   3.37 рад/ч    Вычислить поглошённую дозу в единицах СИ, если при облучении животного Б-излучением при н.у. в 1 см3 воздуха образуется следующее количество пар ионов:   1.0,52х109   2.4,16х1010   3.8,32х1013     Рассчитать эквивалентную дозу во внесистемных единицах, полученную биологическим объектом при облучении быстрыми нейтронами, если поглощённая доза равна:   1.20 сГр   2.47 кГр   3.13 Мрад     Определить экспозиционную дозу в единицах СИ, создаваемую ренттеновским излучением в биологическом объекте, если поглощённая доза равна:   1.17 Гр   2.100 мрад   3.139 срад     Определить величину экспозиционной дозы в единицах СИ, создаваемую ренттеновским излучением, если в 1см3 воздуха при н.у. образуется следующее количество пар нонов:   1.1,37х103   2.5,28х1012   3.4,16х1015     Определить мощность эквивалентной дозы γ-излучения в единицах СИ, создаваемой в биологическом объекте, если мощность экспозиционной дозы составила:   1.235 мкК/ч   2.75 мК/ч   3.29 мА/кг     Вычислить поглощённую дозу во внесистемных единицах, образующуюся при облучении водной среды, если она составила:   1.800 пГр   2.32 сГр   3.99 кГр     Рассчитать мошность поглощённой дозы в единицах СИ, если мощность экспозиционной дозы γ-излучения, создаваемой в биологическом объекте, равна:   1.1,29 мR/ч   2.7,26 мкR/ч   3.17,9х10-4 A/кг     Определить поглощённую дозу в единицах СИ при рентгеновском объекте, равна:   1.1,29 мг/м   2.7,26 мкR/ч   3.17,9х10-4 A/кг     Определить поглощённую дозу в единицах СИ при рентеновском объекте, равна:   1.370 рад   2.49 крад   3.0,8 ГГр     Рассчитать эквивалентную дозу в СИ, полученную организмом при облучении медленными ейтронами, если экспозиционная доза равна:   1.25 Кл/кг   2.281 мR   3.39х10-2 Кл/кг                                                                                                  | 45 | при н.у., если при облучении растений ү-лучами, поглощённая доза составила:                                                                                          |
| 1. 50 Гр/ч 2. 18 мкГр/ч 3. 37 рад/ч  Вычислить поглощённую дозу в единицах СИ, если при облучении животного β-излучением при н.у. в 1 см3 воздуха образуется следующее количество пар ионов:  1. 0,52х109 2. 4,16х1010 3. 8,32х1013  Рассчитать эквивалентную дозу во внесистемных единицах, полученную биологическим объектом при облучении быстрыми нейтронами, если поглощённая доза равна:  1. 20 сГр 2. 47 кГр 3. 13 Мрад  Определить экспозиционную дозу в единицах СИ, создаваемую рентгеновским излучением в биологическом объекте, если поглощённая доза равна:  1. 17 Гр 2. 100 мрад 3. 139 срад  Определить величину экспозиционной дозы в единицах СИ, создаваемую рентгеновским излучением, если в 1см3 воздуха при н.у. образуется следующее количество пар ионов:  1. 1,37х103 2. 5,28х1012 3. 4,16х1015  Определить мощность эквивалентной дозы γ-излучения в единицах СИ, создаваемой в биологическом объекте, если мощность экспозиционной дозы составила:  1. 235 мкR/ч 2. 75 мR/ч 3. 29 MA/кг  Вычислить поглощённую дозу во внесистемных единицах, образующуюся при облучении водной среды, если она составила:  1. 800 пГр 2. 32 сГр 3. 99 кГр  Рассчитать мощность поглощённой дозы в единицах СИ, если мощность экспозиционной дозы γ-излучения, создаваемой в биологическом объекте, равна:  1. 1,29 мR/ч 2. 7,26 мкR/ч 3. 17,9х10-4 A/кг  Определить поглощённую дозу в единицах СИ при рентгеновском облучении микроорганизмов, если она составила:  1. 370 рад 2. 49 крад 3. 0,8 ГГр  Рассчитать эквивалентную дозу в СИ, полученную организмом при облучении медленными нейтронами, если экспозиционная доза равна:  1. 25 Кл/кг 2. 281 мR 3. 39х10-2 Кл/кг                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46 | рентгенодиагностике опухоли у животного, если она равна:                                                                                                             |
| β-излучением при н.у. в 1 см3 воздуха образуется следующее количество пар ионов:   1. 0.52х109   2. 4.16х1010   3. 8.32х1013     Рассчитать эквивалентную дозу во внесистемных единицах, полученную биологическим объектом при облучении быстрыми нейтронами, если поглощённая доза равна:   1. 20 сГр   2. 47 кГр   3. 13 Мрад                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47 | поглощённой дозы равна:                                                                                                                                              |
| Рассчитать эквивалентную дозу во внесистемных единицах, полученную биологическим объектом при облучении быстрыми нейтронами, если поглощённая доза равна:  1. 20 сГр 2. 47 кГр 3. 13 Мрад  Определить экспозиционную дозу в единицах СИ, создаваемую рентгеновским излучением в биологическом объекте, если поглощённая доза равна:  1. 17 Гр 2. 100 мрад 3. 139 срад  Определить величину экспозиционной дозы в единицах СИ, создаваемую рентгеновским излучением, если в 1см3 воздуха при н.у. образуется следующее количество пар ионов:  1. 1,37х103 2. 5,28х1012 3. 4,16х1015  Определить мощность эквивалентной дозы γ-излучения в единицах СИ, создаваемой в биологическом объекте, если мощность экспозиционной дозы составила:  1. 235 мкR/ч 2. 75 мR/ч 3. 29 MA/кг  Вычислить поглощённую дозу во внесистемных единицах, образующуюся при облучении водной среды, если она составила:  1. 800 пГр 2. 32 сГр 3. 99 кГр  Рассчитать мощность поглощённой дозы в единицах СИ, если мощность экспозиционной дозы γ-излучения, создаваемой в биологическом объекте, равна:  1. 1,29 мR/ч 2. 7,26 мкR/ч 3. 17,9х10-4 А/кг  Определить поглощённую дозу в единицах СИ при рентгеновском объекте, равна:  1. 370 рад 2. 49 крад 3. 0,8 ГГр  Рассчитать эквивалентную дозу в СИ, полученную организмом при облучении медленными нейтронами, если экспозиционная доза равна:  1. 25 Кл/кг 2. 281 мR 3. 39х10-2 Кл/кг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48 | β-излучением при н.у. в 1 см3 воздуха образуется следующее количество пар ионов:                                                                                     |
| 50         Определить экспозиционную дозу в единицах СИ, создаваемую рентгеновским излучением в биологическом объекте, если поглощённая доза равна:         1.17 Гр         2.100 мрад         3.139 срад           51         Определить величину экспозиционной дозы в единицах СИ, создаваемую рентгеновским излучением, если в 1см3 воздуха при н.у. образуется следующее количество пар ионов:         1.1,37x103         2.5,28x1012         3.4,16x1015           52         Определить мощность эквивалентной дозы γ-излучения в единицах СИ, создаваемой в биологическом объекте, если мощность экспозиционной дозы составила:         1.235 мкR/ч         2.75 мR/ч         3.29 MA/кг           53         Вычислить поглощённую дозу во внесистемных единицах, образующуюся при облучении водной среды, если она составила:         1.800 пГр         2.32 сГр         3.99 кГр           54         Рассчитать мощность поглощённой дозы в единицах СИ, если мощность экспозиционной дозы γ-излучения, создаваемой в биологическом объекте, равна:         1.1,29 мR/ч         2.7,26 мкR/ч         3.17,9x10-4 A/кг           55         Определить поглощённую дозу в единицах СИ при рентгеновском облучении микроорганизмов, если она составила:         1.370 рад         2.49 крад         3.0,8 ГГр           56         Рассчитать эквивалентную дозу в СИ, полученную организмом при облучении медленными нейтронами, если экспозиционная доза равна:         1.25 Кл/кг         2.281 мR         3.39x10-2 Кл/кг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49 | Рассчитать эквивалентную дозу во внесистемных единицах, полученную биологическим объектом при облучении быстрыми нейтронами, если поглощённая доза равна:            |
| 51         Определить величину экспозиционной дозы в единицах СИ, создаваемую рентгеновским излучением, если в 1см3 воздуха при н.у. образуется следующее количество пар ионов:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 | Определить экспозиционную дозу в единицах СИ, создаваемую рентгеновским излучением в биологическом объекте, если поглощённая доза равна:                             |
| Определить мощность эквивалентной дозы γ-излучения в единицах СИ, создаваемой в биологическом объекте, если мощность экспозиционной дозы составила:  1. 235 мкR/ч  2. 75 мR/ч  3. 29 MA/кг  Вычислить поглощённую дозу во внесистемных единицах, образующуюся при облучении водной среды, если она составила:  1. 800 пГр  2. 32 сГр  3. 99 кГр  Рассчитать мощность поглощённой дозы в единицах СИ, если мощность экспозиционной дозы γ-излучения, создаваемой в биологическом объекте, равна:  1. 1,29 мR/ч  2. 7,26 мкR/ч  3. 17,9x10-4 A/кг  Определить поглощённую дозу в единицах СИ при рентгеновском облучении микроорганизмов, если она составила:  1. 370 рад  2. 49 крад  3. 0,8 ГГр  Рассчитать эквивалентную дозу в СИ, полученную организмом при облучении медленными нейтронами, если экспозиционная доза равна:  1. 25 Кл/кг  2. 281 мR  3. 39x10-2 Кл/кг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51 | Определить величину экспозиционной дозы в единицах СИ, создаваемую рентгеновским излучением, если в 1см3 воздуха при н.у. образуется следующее количество пар ионов: |
| Вычислить поглощённую дозу во внесистемных единицах, образующуюся при облучении водной среды, если она составила:  1. 800 пГр  2. 32 сГр  3. 99 кГр  Рассчитать мощность поглощённой дозы в единицах СИ, если мощность экспозиционной дозы γ-излучения, создаваемой в биологическом объекте, равна:  1. 1,29 мR/ч  2. 7,26 мкR/ч  3. 17,9x10-4 A/кг  Определить поглощённую дозу в единицах СИ при рентгеновском облучении микроорганизмов, если она составила:  1. 370 рад  2. 49 крад  3. 0,8 ГГр  Рассчитать эквивалентную дозу в СИ, полученную организмом при облучении медленными нейтронами, если экспозиционная доза равна:  1. 25 Кл/кг  2. 281 мR  3. 39x10-2 Кл/кг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52 | Определить мощность эквивалентной дозы у-излучения в единицах СИ, создаваемой в биологическом объекте, если мощность экспозиционной дозы составила:                  |
| 54       экспозиционной дозы γ-излучения, создаваемой в биологическом объекте, равна:         1. 1,29 мR/ч       2. 7,26 мкR/ч       3. 17,9x10-4 A/кг         Определить поглощённую дозу в единицах СИ при рентгеновском облучении микроорганизмов, если она составила:       1. 370 рад       2. 49 крад       3. 0,8 ГГр         Рассчитать эквивалентную дозу в СИ, полученную организмом при облучении медленными нейтронами, если экспозиционная доза равна:       1. 25 Кл/кг       2. 281 мR       3. 39x10-2 Кл/кг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53 | Вычислить поглощённую дозу во внесистемных единицах, образующуюся при облучении водной среды, если она составила:                                                    |
| Определить поглощённую дозу в единицах СИ при рентгеновском облучении микроорганизмов, если она составила:  1. 370 рад 2. 49 крад 3. 0,8 ГГр Рассчитать эквивалентную дозу в СИ, полученную организмом при облучении медленными нейтронами, если экспозиционная доза равна: 1. 25 Кл/кг 2. 281 мR 3. 39х10-2 Кл/кг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54 | экспозиционной дозы у-излучения, создаваемой в биологическом объекте, равна:                                                                                         |
| Рассчитать эквивалентную дозу в СИ, полученную организмом при облучении медленными нейтронами, если экспозиционная доза равна: 1. 25 Кл/кг 2. 281 мR 3. 39x10-2 Кл/кг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55 | Определить поглощённую дозу в единицах СИ при рентгеновском облучении микроорганизмов, если она составила:                                                           |
| Определить поглощённую дозу а-излучения для воздушной среды во                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56 | Рассчитать эквивалентную дозу в СИ, полученную организмом при облучении медленными нейтронами, если экспозиционная доза равна:                                       |
| 57 внесистемных единицах, если экспозиционная доза составила:<br>1. 12,9х10-4 Кл/кг 2. 9,03х10-1 Кл/кг 3. 15,48х105 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57 |                                                                                                                                                                      |

|    | Определить поглощённую дозу β-излучения для биологического объекта во               |  |
|----|-------------------------------------------------------------------------------------|--|
| 58 | внесистемных единицах, если экспозиционная доза составила:                          |  |
|    | 1. 72,93х10-4 Кл/кг 2. 390х10-3 Кл/кг 3. 15х108 R                                   |  |
|    |                                                                                     |  |
|    | Рассчитать мощность эквивалентной дозы α-излучения во внесистемных                  |  |
| 59 | единицах, создаваемой в биологическом объекте, если мощность                        |  |
|    | экспозиционной дозы равна:                                                          |  |
|    | 1. 29 cA/кг 2. 58 мR/ч 3. 65х102 A/кг                                               |  |
| 60 | Вычислить суммарную эквивалентную дозу, полученную биологическим                    |  |
|    | объектом от смешанного источника излучения, если поглощённые дозы                   |  |
|    | составили:                                                                          |  |
|    | от β-излучения – 10 Гр, от α-излучения – 700 рад, от $\gamma$ -излучения – 1000 Гр. |  |
|    |                                                                                     |  |

Критерии оценки ответа (табл.) доводятся до сведения обучающихся в начале занятий. Оценка объявляется обучающемуся непосредственно после проверки работы.


| Шкала                 | Критерии оценивания                                                  |  |
|-----------------------|----------------------------------------------------------------------|--|
| Оценка 5              | - обучающийся выполнил работу полностью без ошибок и недочетов;      |  |
| (отлично)             | - грамотно, последовательно и аккуратно выполнил задание             |  |
|                       | - обучающийся выполнил работу полностью;                             |  |
| Оценка 4              | - грамотно, последовательно и аккуратно выполнил задание;            |  |
| (хорошо)              | - имеются в ней не более одной негрубой ошибки и одного недочета, не |  |
|                       | более трех недочетов                                                 |  |
|                       | - обучающийся правильно выполнил не менее 2/3 всей работы;           |  |
| Оценка 3              | - допущены ошибки в формуле, в единицах измерения;                   |  |
| (удовлетворительно)   | - последовательно и аккуратно выполнено задание;                     |  |
|                       | - допустил не более одной грубой ошибки и двух недочетов             |  |
| Оценка 2              | - Обучающийся правильно выполнил менее половины всей работы;         |  |
| (неудовлетворительно) | - работа выполнена не по алгоритму, не аккуратно                     |  |

#### 4.1.4 Тестирование

Тестирование используется для оценки качества освоения обучающимся основной профессиональной образовательной программы по отдельным темам и разделам дисциплины. Тест представляет собой комплекс стандартизированных заданий, позволяющий упростить процедуру измерения знаний и умений обучающихся. Обучающимся выдаются тестовые задания с формулировкой вопросов и предложением выбрать один правильный ответ из нескольких вариантов ответов.

|       |                                                                 | Код и наименование   |
|-------|-----------------------------------------------------------------|----------------------|
| № п/п | Оценочные средства                                              | индикатора           |
|       |                                                                 | компетенции          |
| 1     | 1. Х-лучи, проникающие сквозь предметы и оставляющие след на    | ИД-1.УК-1            |
|       | фотопленке, открыл учёный:                                      | Осуществляет поиск,  |
|       | А) Анри Беккерель                                               | критический анализ и |
|       | Б) Вильгельм Конрад Рентген                                     | синтез информации,   |
|       | В) Мария Складовская-Кюри                                       | применяет системный  |
|       | Г) Пьер Кюри                                                    | подход для решения   |
|       | 2. Явление радиоактивности впервые открыл учёный:               | поставленных задач   |
|       | А) Анри Беккерель                                               |                      |
|       | Б) Вильгельм Конрад Рентген                                     |                      |
|       | В) Мария Складовская-Кюри                                       |                      |
|       | Г) Пьер Кюри                                                    |                      |
|       | 3. Учёные, открывшие и описавшие радиоактивные свойства полония |                      |
|       | и радия.                                                        |                      |
|       | А) Анри Беккерель и Пьер Кюри                                   |                      |
|       | Б) Вильгельм Конрад Рентген и Мария Складовская                 |                      |
|       | В) Мария Складовская-Кюри и Пьер Кюри                           |                      |
|       | Г) Анри Беккерель и Вильгельм Конрад Рентген                    |                      |

|   | 4. Вильгельм Конрад Рентген в 1895 году открыл:                                                                                      |                                          |
|---|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|   | A) X-лучи, способные проникать сквозь предметы и оставлять след на фотоплёнке                                                        |                                          |
|   | <ul><li>Б) естественную радиоактивность урана, проявляющуюся в</li></ul>                                                             |                                          |
|   | самопроизвольном испускании невидимых лучей                                                                                          |                                          |
|   | В) радиоактивные свойства полония Г) радиоактивные свойства радия                                                                    |                                          |
|   | 5. Французский физик Анри Беккерель впервые открыл:                                                                                  |                                          |
|   | А) Х-лучи, способные проникать сквозь предметы и оставлять след на                                                                   |                                          |
|   | фотоплёнке                                                                                                                           |                                          |
|   | Б) явление радиоактивности В) радиоактивные свойства полония и радия                                                                 |                                          |
|   | Г) явление изотопии                                                                                                                  |                                          |
|   | 6. Основными средствами индивидуальной защиты при работе с                                                                           |                                          |
|   | радиоактивными веществами являются:                                                                                                  |                                          |
|   | А) халаты, тапочки, бахилы, перчатки, защитные очки, комбинезоны                                                                     |                                          |
|   | Б) халаты, туфли, босоножки, комбинезоны, респираторы В) противогазы, юбки, сарафаны, защитные щитки из оргстекла                    |                                          |
|   | Г) нарукавники, чепчики, блузки, сапожки, косынки, банданки                                                                          |                                          |
|   | 7. Основными способами защиты при работе с радиоактивными                                                                            |                                          |
|   | веществами являются:                                                                                                                 |                                          |
|   | А) расстояние, промежуток времени, дезактивация                                                                                      |                                          |
|   | Б) расстояние, время, разведение, поглощение В) разведение, поглощение, перемешивание                                                |                                          |
|   | Г) расстояние, нейтрализация, активизация, концентрация                                                                              |                                          |
|   | 8. Согласно НРБ-96 население делят накатегории(й).                                                                                   |                                          |
|   | 9. Внешнее облучение — это облучение                                                                                                 |                                          |
|   | А) от радиоактивных источников излучения, находящихся внутри объекта                                                                 |                                          |
|   | Б) от радиоактивных источников излучения, находящихся вне организма В) граждан, привлекаемых для ликвидации последствий радиационных |                                          |
|   | аварий                                                                                                                               |                                          |
|   | Г) организма космическими лучами                                                                                                     |                                          |
|   | 10. Группа людей, относящихся к категории В:                                                                                         |                                          |
|   | A) работники, которые постоянно или временно работают с источниками ионизирующего излучения                                          |                                          |
|   | Б) ограниченная часть населения, которая по условиям проживания или                                                                  |                                          |
|   | размещения рабочих могут подвергаться воздействию радиоактивных                                                                      |                                          |
|   | веществ                                                                                                                              |                                          |
|   | В) население, испытывающее естественное радиационное воздействие                                                                     |                                          |
|   | Г) граждане, привлекаемые для ликвидации последствий радиационных аварий                                                             |                                          |
|   | 1. Искусственными радиоактивными веществами называют вещества,                                                                       | ИД-1. ОПК-2                              |
|   | получаемые (добываемые)                                                                                                              | Осуществляет                             |
|   | А) человеком путём воздействия на атомы какими-либо элементарными                                                                    | интерпретацию и                          |
|   | частицами                                                                                                                            | анализ действия                          |
|   | Б) путём влияния на атом космических лучей В) человеком из природных ископаемых                                                      | различных факторов<br>на физиологическое |
|   | Г) в природе под влиянием солнечной энергии                                                                                          | состояние организма                      |
|   | 2. Сущность закона радиоактивного распада заключается в том,                                                                         | животных в                               |
|   | 4T0                                                                                                                                  | профессиональной                         |
|   | А) скорость и характер распада не зависят от количества радиоактивного                                                               | деятельности                             |
| 2 | вещества Б) распад происходит под действием внутриядерных процессов                                                                  |                                          |
|   | В) за единицу времени всегда распадается одна и та же часть имеющихся в                                                              |                                          |
|   | наличии радиоактивных ядер                                                                                                           |                                          |
|   | Г) скорость и характер распада постоянны для всех радиоактивных веществ                                                              |                                          |
|   | 3. Постоянная радиоактивного распада характеризует: А) долю радиоактивных атомов, распадающихся в единицу времени                    |                                          |
|   | Б) среднюю продолжительность жизни атомного ядра                                                                                     |                                          |
|   | В) относительную скорость распада                                                                                                    |                                          |
|   | Г) обратную величину периода полураспада                                                                                             |                                          |
|   | 4. Формула для определения остаточной активности радионуклида                                                                        |                                          |
|   | через какой-то промежуток времени:                                                                                                   |                                          |



```
\Gamma) \mu_{\rm m} = P_{\rm m} \times K
5. Формула, для определения экспозиционной дозы через поглощённую:
A) \Pi_{\circ} = \Pi_{\Pi} : K
B) \Pi_{2} = \Pi_{1} \times K
         2.08 \cdot 10^9 n.u.
6. Формула, по которой определяют мощность дозы:
A) \Pi = P \times t
\mathbf{F}) \mathbf{P} = \mathbf{\Pi} \mathbf{x} \mathbf{t}
В) Р = К:Д
\Gamma) P = \mathcal{I} : t
7. Формула для определения эквивалентной дозы:
\Gamma) \Pi_{SKB} = \Pi_{II} \times KK
8. Формула для определения уровня радиации на местности:
A) P_9 = \mathcal{A}_9 : t
Б) P_{\text{экв}} = Д_{\text{э}} : t
B) P_a = \mathcal{I}_a \times t
\Gamma) P_2 = \Pi_{rr} : t
9. Допустимая величина мощности дозы гамма-излучения:
А) 15 мкR/ч
Б) 24 мкR/ч
В) 34 мкR/ч
Г) 24 мR/ч
10. Единицы измерения экспозиционной дозы:
A) R; Кл/кг
Б) R; Гр
В) Кл/кг; рад
Г) Зв; Ки
```

Критерии оценки ответа обучающегося (табл.) доводятся до сведения обучающихся до начала тестирования. Результат тестирования объявляется обучающемуся непосредственно после его сдачи.

| Шкала                                      | Критерии оценивания<br>(% правильных ответов) |
|--------------------------------------------|-----------------------------------------------|
| Оценка зачтено/5 (отлично)                 | 86-100                                        |
| Оценка зачтено/ 4 (хорошо)                 | 71-85                                         |
| Оценка зачтено/ 3 (удовлетворительно)      | 60-70                                         |
| Оценка не зачтено/ 2 (неудовлетворительно) | менее 60                                      |

# 4.2. Процедуры и оценочные средства для проведения промежуточной аттестации 4.2.1.Зачет с оценкой

Зачет с оценкой является формой оценки качества освоения обучающимся основной профессиональной образовательной программы по разделам дисциплины. По результатам зачета обучающемуся выставляется оценка «зачтено» / «удовлетворительно», «зачтено» / «хорошо», «зачтено» / «отлично», или «не зачтено» / «неудовлетворительно».

Зачет проводится по окончании чтения лекций и выполнения практических занятий. Зачет принимается преподавателями, проводившими практические занятия, или читающими лекции по данной дисциплине. В случае отсутствия ведущего преподавателя зачет принимается преподавателем, назначенным распоряжением заведующего кафедрой. С разрешения заведующего кафедрой на зачете может присутствовать преподаватель кафедры, привлеченный для помощи в приеме зачета.

Присутствие на зачете преподавателей с других кафедр без соответствующего распоряжения ректора, проректора по учебной работе или декана факультета не допускается.

Форма(ы) проведения зачета (устный опрос, тестирование.) определяются кафедрой и доводятся до сведения обучающихся в начале семестра.

Для проведения зачета ведущий преподаватель накануне получает в деканате зачетноэкзаменационную ведомость, которая возвращается в деканат после окончания мероприятия в день проведения зачета или утром следующего дня.

Обучающиеся при явке на зачет обязаны иметь при себе зачетную книжку, которую они предъявляют преподавателю.

Во время зачета обучающиеся могут пользоваться с разрешения ведущего преподавателя справочной и нормативной литературой, другими пособиями и техническими средствами.

Время подготовки ответа в устной форме при сдаче зачета должно составлять не менее 20 минут (по желанию обучающегося ответ может быть досрочным). Время ответа - не более 10 минут.

Преподавателю предоставляется право задавать обучающимся дополнительные вопросы в рамках программы дисциплины.

Оценка «зачтено» / «удовлетворительно», «зачтено» / «хорошо», «зачтено» / «отлично», внесенная в зачетную книжку и зачетно-экзаменационную ведомость, является результатом успешного усвоения учебного материала.

Результат зачета в зачетную книжку выставляется в день проведения зачета в присутствии самого обучающегося. Преподаватели несут персональную ответственность за своевременность и точность внесения записей о результатах промежуточной аттестации в зачетно-экзаменационную ведомость и в зачетные книжки.

Если обучающийся явился на зачет и отказался от прохождения аттестации в связи с неподготовленностью, то в зачетно-экзаменационную ведомость ему выставляется оценка «не зачтено».

Неявка на зачет отмечается в зачетно-экзаменационной ведомости словами «не явился».

Нарушение дисциплины, списывание, использование обучающимися неразрешенных печатных и рукописных материалов, мобильных телефонов, коммуникаторов, планшетных компьютеров, ноутбуков и других видов личной коммуникационной и компьютерной техники во время зачета запрещено. В случае нарушения этого требования преподаватель обязан удалить обучающегося из аудитории и проставить ему в ведомости оценку «не зачтено».

Обучающимся, не сдавшим зачет в установленные сроки по уважительной причине, индивидуальные сроки проведения зачета определяются деканом факультета.

Обучающиеся, имеющие академическую задолженность, сдают зачет в сроки, определяемые Университетом. Информация о ликвидации задолженности отмечается в экзаменационном листе.

Допускается с разрешения деканата и досрочная сдача зачета с записью результатов в экзаменационный лист.

Инвалиды и лица с ограниченными возможностями здоровья могут сдавать зачеты в сроки, установленные индивидуальным учебным планом. Инвалиды и лица с ограниченными возможностями здоровья, имеющие нарушения опорно-двигательного аппарата, допускаются на аттестационные испытания в сопровождении ассистентов-сопровождающих.

Процедура проведения промежуточной аттестации для особых случаев изложена в «Положении о текущем контроле успеваемости и промежуточной аттестации обучающихся

по ОПОП бакалавриата, специалитета и магистратуры» ФГБОУ ВО Южно-Уральский ГАУ (ЮУрГАУ-П-02-66/02-16 от 26.10.2016 г.).

|       |                                                                                                                      | Код и наименование          |
|-------|----------------------------------------------------------------------------------------------------------------------|-----------------------------|
| № п/п | Оценочные средства                                                                                                   | индикатора                  |
|       |                                                                                                                      | компетенции                 |
| 1     | 1. Радиобиология, как наука, её задачи и связь с другими дисциплинами.                                               | ИД-1.УК-1                   |
|       | Количественная характеристика доз излучения, их воздействие на                                                       | Осуществляет поиск,         |
|       | биологические объекты.                                                                                               | критический анализ и        |
|       | 2. История развития радиобиологии (4 этапа).                                                                         | синтез информации,          |
|       | 3. Строение атома (с указанием массового, зарядового чисел, количества                                               | применяет системный         |
|       | орбит) и характеристика его элементарных частиц (протон, нейтрон,                                                    | подход для решения          |
|       | электрон) по массе, заряду, энергии и продолжительности жизни.                                                       | поставленных задач          |
|       | 4. Понятие об элементарной частице. Основные параметры,                                                              |                             |
|       | характеризующие элементарную частицу. Дефект массы ядра атома, его                                                   | ИД-1. ОПК-2                 |
|       | практическое значение.                                                                                               | Осуществляет                |
|       | 5. Виды α- и β-электронного распадов.                                                                                | интерпретацию и             |
|       | 6. Виды β-позитронного распада и электронного К-захвата.                                                             | анализ действия             |
|       | 7. Ядерные реакции (деления, синтеза, активации). Их практическое                                                    | различных факторов          |
|       | применение.                                                                                                          | на физиологическое          |
|       | 8. Взаимодействие α- и β-излучения с веществом (формы потери энергии в                                               | состояние организма         |
|       | поглотителе).                                                                                                        | животных в                  |
|       | 9. Взаимодействие у-квантов с веществом (фотоэффект, Комптоновский                                                   | профессиональной            |
|       | эффект, образование пар).                                                                                            | деятельности                |
|       | 10. Характеристика основных радиоактивных семейств (урана-радия,                                                     | _                           |
|       | актиноурана, тория).                                                                                                 | ИД-1. ОПК-3                 |
|       | 11. Технологические способы переработки загрязнённой радионуклидами                                                  | Осуществляет поиск          |
|       | животноводческой продукции.                                                                                          | современной                 |
|       | 12. Характеристика R-излучения и α-излучения по схеме.                                                               | актуальной и                |
|       | 13. Характеристика γ-излучения и β-излучения по схеме                                                                | достоверной                 |
|       | 14. Методы, лежащие в основе работы детекторов: ионизационный и калориметрический.                                   | информации о<br>нормативных |
|       | 15. Методы, лежащие в основе работы детекторов: колориметрический,                                                   | правовых актах в            |
|       | цериевый и фотографический.                                                                                          | сфере                       |
|       | 16. Методы, лежащие в основе работы детекторов: полупроводниковый,                                                   | агропромышленного           |
|       | ферросульфатный и сцинтилляционный.                                                                                  | комплекса                   |
|       | 17. Дозиметры ИФКУ-І ИД-І, ИД-ІІ и Белла (назначение, устройство и                                                   | совершенствует,             |
|       | принцип работы).                                                                                                     | профессиональную            |
|       | 18. Понятие о радиометрах, их назначение и классификация.                                                            | деятельность в              |
|       | 19. Радиометры ДП-100 и СРП-68-01 (назначение, устройство и принцип                                                  | соответствии с ними         |
|       | работы).                                                                                                             |                             |
|       | 20. Радиометры Б-3 и РКБ-4-1еМ (назначение, устройство и принцип                                                     |                             |
|       | работы).                                                                                                             |                             |
|       | 21. Понятие о спектрометрах, их назначение и классификация. Устройство                                               |                             |
|       | и порядок работы на сцинтилляционном у-спектрометре.                                                                 |                             |
|       | 22. Условия радиометрии, влияющие на скорость счёта препарата (вид                                                   |                             |
|       | излучения, расстояние, тип счётчика и плотность материала подложки).                                                 |                             |
|       | 23. Правила, сроки и нормы отбора проб продуктов растениеводства для                                                 |                             |
|       | радиохимического анализа и радиометрии.                                                                              |                             |
|       | 24. Правила, сроки и нормы отбора проб продуктов животноводства для                                                  |                             |
|       | радиохимического анализа и радиометрии.                                                                              |                             |
|       | 25. Техника радиационной безопасности при работе с радиоактивными                                                    |                             |
|       | веществами. 26. Устройство, оборудование и назначение ветеринарных и научно-                                         |                             |
|       | производственных радиологических лабораторий.                                                                        |                             |
|       | производственных радиологических лаооратории.  27. Основные цели и задачи радиационной безопасности. Типы источников |                             |
|       | излучения.                                                                                                           |                             |
|       | 28. Источники природного радиационного фона (космические лучи,                                                       |                             |
|       | природные радиоактивные вещества).                                                                                   |                             |
|       | 29. Источники искусственного радиационного фона (продукты атомного и                                                 |                             |
|       | термоядерного взрывов). Классификация радиоактивных осадков при                                                      |                             |
|       | атмосферных выпадениях.                                                                                              |                             |
|       | 30. Перемещение радиоактивных веществ в биосфере. Источники ТИРФ.                                                    |                             |
|       |                                                                                                                      | •                           |

- 31. Ведение сельскохозяйственного производства на территории, загрязнённой молодыми ПЯД (в ближайший период после выпадения радиоактивных осадков).
- 32. Ведение сельскохозяйственного производства на территории, загрязнённой долгоживущими ПЯД (в отдалённый период после выпадения радиоактивных осадков).
- 33. Мероприятия по снижению содержания долгоживущих радионуклидов в сельскохозяйственной продукции, продуктах питания и в кормах для животных (агрохимические, агротехнические и зоотехнические).
- 34. Использование радионуклидов и ионизирующих излучений в селекционно-генетических исследованиях (выведение новых сортов растений) и в процессе радиационно-биологических технологий (изготовление вакцин, обеззараживание навоза и навозных стоков, дезактивация, стерилизация и т.д.)
- 35. Понятие о биологическом действии ионизирующих излучений. Особенности и механизм действия ионизирующей радиации (основные теории и гипотезы).
- 36. Острая лучевая болезнь (степени и периоды).
- 37. Радиотоксикология, как наука. Факторы, обусловливающие токсичность инкорпорированных радионуклидов (физические и химические).
- 38. Пути поступления радиоактивных веществ в организм и их распределение в нём.
- 39. Накопление радиоактивных веществ в организме, их выведение и методы ускорения выведения из организма.
- 40. Радиоэкология, её проблемы и задачи. Миграция радиоактивных веществ по кормовым и трофическим цепям.
- 41. Использование продуктивных животных, подвергшихся радиационному воздействию.
- 42. Дезактивация молока и мяса, загрязнённых радиоактивными веществами. Влияние технологической обработки продуктов и сырья животного происхождения на содержание радиоактивных веществ.
- 43. Дезактивация фуража и воды. Обеззараживание и захоронение радиоактивных отходов.
- 44. Цели прогнозирования содержания радионуклидов в продукции растениеводства и животноводства. Прогноз поступления радионуклидов в продукцию животноводства.
- 45. Цели нормирования поступления радионуклидов в организм животных. Основные принципы нормирования содержания радионуклидов в организме продуктивных животных и их продукции.
- 46. Принципы составления рационов для сельскохозяйственных животных и птицы в условиях радиоактивного загрязнения кормов с целью получения от них пригодной в пищу продукции.
- 47. Понятие об ионизирующем излучении. Характеристика нейтронного излучения по схеме.
- 48. Дозиметрия, её цели и задачи. Понятие о дозе.
- 49. Доза экспозиционная, мощность экспозиционной дозы (определение, формулы, единицы измерения).
- 50. Доза поглощённая, мощность поглощённой дозы (определение, формулы, единицы измерения).
- 51. Доза эквивалентная, мощность эквивалентной дозы (определение, формулы, единицы измерения).
- 52. Категории облучаемых лиц. Понятие о ПД и ПДД. Понятие о критическом органе. Группы критических органов при внешнем облучении.
- 53. Понятие о дозиметрах, их назначение и классификация.
- 54. Дозиметры КИД-I, Мастер-I и СЗБ-04 (назначение, устройство и принцип работы).
- 55. Радиометрия, её цели и задачи. Понятие о радиоактивном веществе и его активности. Период полураспада.
- 56. Закон радиоактивного распада (определение, формулы расчёта активности с помощью логарифма и по Верховской).
- 57. Характер поглощения β-излучения в веществе. Определение слоя половинного ослабления.
- 58. Подготовка проб растениеводства и животноводства для

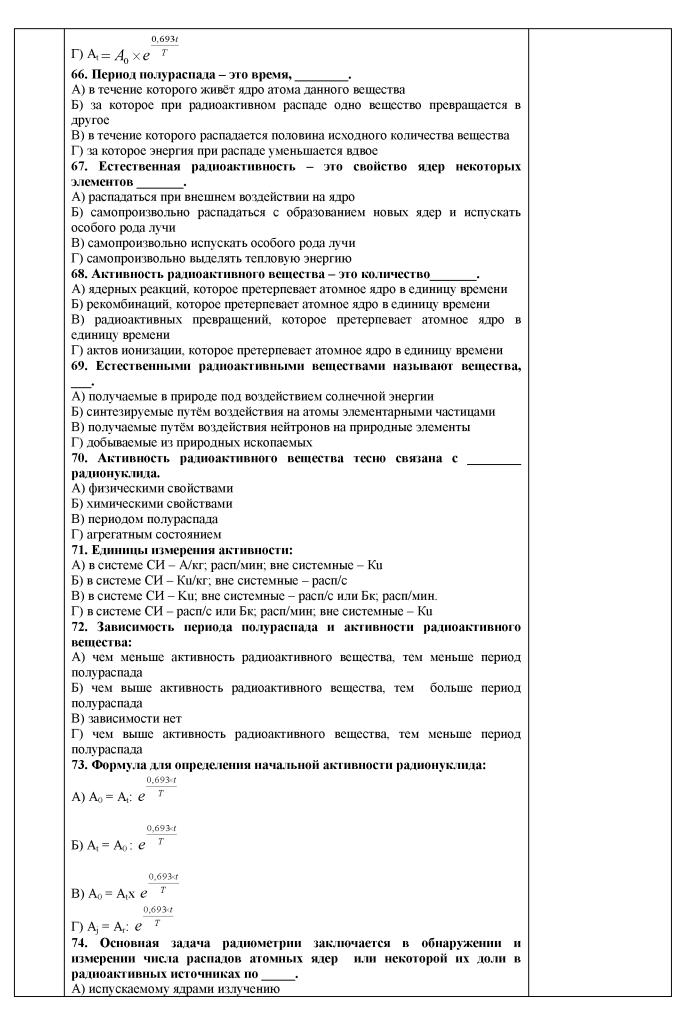
радиохимического анализа.
59. Средства защиты, используемые при работе с радиоактивными источниками.
60. Способы защиты, используемые при работе с источниками ионизирующих излучений.

## Шкала и критерии оценивания ответа обучающегося представлены в таблице

| Шкала                 | Критерии оценивания                                                                    |
|-----------------------|----------------------------------------------------------------------------------------|
| Зачтено / 5           | - обучающийся полно усвоил учебный материал;                                           |
| (отлично)             | - показывает знание основных понятий дисциплины, грамотно пользуется                   |
|                       | терминологией;                                                                         |
|                       | - проявляет умение анализировать и обобщать информацию, навыки связного                |
|                       | описания явлений и процессов;                                                          |
|                       | - демонстрирует умение излагать материал в определенной логической последовательности; |
|                       | - показывает умение иллюстрировать теоретические положения конкретными                 |
|                       | примерами;                                                                             |
|                       | - демонстрирует сформированность и устойчивость знаний, умений и навыков;              |
|                       | - могут быть допущены одна-две неточности при освещении второстепенных                 |
|                       | вопросов                                                                               |
| Зачтено / 4           | - ответ удовлетворяет в основном требованиям на оценку «5», но при этом имеет          |
| (хорошо)              | место один из недостатков:                                                             |
|                       | - в усвоении учебного материала допущены пробелы, не исказившие содержание             |
|                       | ответа;                                                                                |
|                       | - в изложении материала допущены незначительные неточности                             |
| Зачтено / 3           | - знание основного программного материала в минимальном объеме,                        |
| (удовлетворительно)   | погрешности непринципиального характера в ответе на экзамене: неполно или              |
|                       | непоследовательно раскрыто содержание материала, но показано общее                     |
|                       | понимание вопросов; - имелись затруднения или допущены ошибки в определении понятий,   |
|                       | использовании терминологии, описании явлений и процессов, исправленные                 |
|                       | после наводящих вопросов;                                                              |
|                       | - выявлена недостаточная сформированность знаний, умений и навыков,                    |
|                       | обучающийся не может применить теорию в новой ситуации                                 |
| Не зачтено / 2        | - пробелы в знаниях основного программного материала, принципиальные                   |
| (неудовлетворительно) | ошибки при ответе на вопросы;                                                          |
|                       | - обнаружено незнание или непонимание большей или наиболее важной части                |
|                       | учебного материала;                                                                    |
|                       | - допущены ошибки в определении понятий, при использовании терминологии,               |
|                       | в описании явлений и процессов, которые не исправлены после нескольких                 |
|                       | наводящих вопросов;                                                                    |
|                       | - не сформированы компетенции, отсутствуют соответствующие знания, умения              |
|                       | и навыки                                                                               |

## Тестовые задания по дисциплине

|       |                                                              | Код и наименование   |  |
|-------|--------------------------------------------------------------|----------------------|--|
| № п/п | Оценочные средства                                           | индикатора           |  |
|       |                                                              | компетенции          |  |
|       | 1. Х-лучи, проникающие сквозь предметы и оставляющие след на | ИД-1.УК-1            |  |
|       | фотопленке, открыл учёный:                                   | Осуществляет поиск,  |  |
|       | А) Анри Беккерель                                            | критический анализ и |  |
|       | Б) Вильгельм Конрад Рентген                                  | синтез информации,   |  |
|       | В) Мария Складовская-Кюри                                    | применяет системный  |  |
| 1     | Г) Пьер Кюри                                                 | подход для решения   |  |
|       | 2. Явление радиоактивности впервые открыл учёный:            | поставленных задач   |  |
|       | А) Анри Беккерель                                            |                      |  |
|       | Б) Вильгельм Конрад Рентген                                  |                      |  |
|       | В) Мария Складовская-Кюри                                    |                      |  |
|       | Г) Пьер Кюри                                                 |                      |  |


| 3. Учёные, открывшие и описавшие радиоактивные свойства полония и                                                                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--|
| радия.                                                                                                                              |  |
| А) Анри Беккерель и Пьер Кюри Б) Вильгельм Конрад Рентген и Мария Складовская                                                       |  |
| В) Мария Складовская-Кюри и Пьер Кюри                                                                                               |  |
| Г) Анри Беккерель и Вильгельм Конрад Рентген                                                                                        |  |
| 4. Вильгельм Конрад Рентген в 1895 году открыл:                                                                                     |  |
| А) Х-лучи, способные проникать сквозь предметы и оставлять след на                                                                  |  |
| фотоплёнке                                                                                                                          |  |
| Б) естественную радиоактивность урана, проявляющуюся в                                                                              |  |
| самопроизвольном испускании невидимых лучей                                                                                         |  |
| В) радиоактивные свойства полония                                                                                                   |  |
| Г) радиоактивные свойства радия                                                                                                     |  |
| 5. Французский физик Анри Беккерель впервые открыл:                                                                                 |  |
| А) Х-лучи, способные проникать сквозь предметы и оставлять след на                                                                  |  |
| фотоплёнке Б) явление радиоактивности                                                                                               |  |
| В) радиоактивные свойства полония и радия                                                                                           |  |
| Г) явление изотопии                                                                                                                 |  |
| 6. Основными средствами индивидуальной защиты при работе с                                                                          |  |
| радиоактивными веществами являются:                                                                                                 |  |
| А) халаты, тапочки, бахилы, перчатки, защитные очки, комбинезоны                                                                    |  |
| Б) халаты, туфли, босоножки, комбинезоны, респираторы                                                                               |  |
| В) противогазы, юбки, сарафаны, защитные щитки из оргстекла                                                                         |  |
| Г) нарукавники, чепчики, блузки, сапожки, косынки, банданки                                                                         |  |
| 7. Основными способами защиты при работе с радиоактивными                                                                           |  |
| веществами являются:                                                                                                                |  |
| А) расстояние, промежуток времени, дезактивация                                                                                     |  |
| Б) расстояние, время, разведение, поглощение<br>В) разведение, поглощение, перемешивание                                            |  |
| Г) расстояние, нейтрализация, активизация, концентрация                                                                             |  |
| 8. Согласно НРБ-96 население делят на категории(й).                                                                                 |  |
| 9. Внешнее облучение — это облучение                                                                                                |  |
| А) от радиоактивных источников излучения, находящихся внутри объекта                                                                |  |
| Б) от радиоактивных источников излучения, находящихся вне организма                                                                 |  |
| В) граждан, привлекаемых для ликвидации последствий радиационных                                                                    |  |
| аварий                                                                                                                              |  |
| Г) организма космическими лучами                                                                                                    |  |
| 10. Группа людей, относящихся к категории В:                                                                                        |  |
| А) работники, которые постоянно или временно работают с источниками                                                                 |  |
| ионизирующего излучения                                                                                                             |  |
| Б) ограниченная часть населения, которая по условиям проживания или размещения рабочих могут подвергаться воздействию радиоактивных |  |
| размещения расочих могут подвергаться воздействию радиоактивных веществ                                                             |  |
| В) население, испытывающее естественное радиационное воздействие                                                                    |  |
| Г) граждане, привлекаемые для ликвидации последствий радиационных                                                                   |  |
| аварий                                                                                                                              |  |
| 11. От внешнего и внутреннего облучения существует способа (ов)                                                                     |  |
| защиты                                                                                                                              |  |
| 12. Критическим называется орган,                                                                                                   |  |
| А) подвергающийся наибольшему повреждающему действию вследствие                                                                     |  |
| очень низкой радиочувствительности или незначительного отложения в нём                                                              |  |
| какого-либо радионуклида.                                                                                                           |  |
| Б) подвергающийся наибольшему повреждающему действию вследствие высокой радиочувствительности или преимущественного отложения в нём |  |
| высокой радиочувствительности или преимущественного отложения в нем какого-либо радионуклида                                        |  |
| В) не подвергающийся наибольшему повреждающему действию вследствие                                                                  |  |
| нейтральной радиочувствительности или преимущественного отложения в                                                                 |  |
| нём какого-либо радионуклида                                                                                                        |  |
| Г) подвергающийся избирательному действию вследствие высокой                                                                        |  |
| сорбционной способности или преимущественного отложения в нём какого-                                                               |  |
| либо токсического вещества                                                                                                          |  |
| 13. Лезактивация – это                                                                                                              |  |

| А) удаление радиоактивных веществ с поверхностей или из массы различных                                        |
|----------------------------------------------------------------------------------------------------------------|
| объектов внешней среды                                                                                         |
| Б) удаление радиоактивных веществ с объектов ветеринарного надзора                                             |
| В) снижение уровня загрязнения радиоактивными веществами до допустимых                                         |
| уровней                                                                                                        |
| Г) смывание радиоактивных веществ водой или обработка пылесосами                                               |
| объектов внешней среды                                                                                         |
| 14. Обработка объектов кислотами и щелочами относится кметоду                                                  |
| дезактивации.                                                                                                  |
| А) механическому                                                                                               |
| Б) химическому                                                                                                 |
| В) физическому                                                                                                 |
| Г) биологическому                                                                                              |
| 15. Контроль за качеством дезактивации осуществляется с помощью:                                               |
| А) дозиметрических приборов                                                                                    |
| Б) радиохимической экспертизы                                                                                  |
| В) детекторов                                                                                                  |
| Г) дозиметрических и радиометрических приборов                                                                 |
| 16. Обработка объектов кислотами и щелочами относится кметоду                                                  |
| дезактивации.                                                                                                  |
| 17. Нестабильным называется атом, в ядре которого                                                              |
| <ul><li>А) всегда имеется одинаковое количество нейтронов</li><li>Б) преобладает количество протонов</li></ul> |
| В) равное количество протонов и нейтронов                                                                      |
| Г) преобладает количество нейтронов                                                                            |
| 18. Атом, в ядре которого равное количество протонов и нейтронов                                               |
| является                                                                                                       |
| 19. Процесс ионизации заключается в:                                                                           |
| А) отнятии частицы нейтрино                                                                                    |
| Б) превращении нейтральных атомов в ионы                                                                       |
| В) образовании электрических зарядов разных знаков при взаимодействии с                                        |
| веществом                                                                                                      |
| Г) воздействии на атом тепловой энергии                                                                        |
| 20. Элементарные частицы, входящие в состав ядра атома.                                                        |
| А) электроны и протоны                                                                                         |
| Б) протоны и нейтроны                                                                                          |
| В) протоны и нейтрино                                                                                          |
| Г) нейтроны и мезоны                                                                                           |
| 21. Зарядовое число элемента показывает количество в ядре.                                                     |
| 22. Массовое число элемента показывает количество в ядре.                                                      |
| А) нейтронов и электронов                                                                                      |
| Б) электронов и протонов                                                                                       |
| В) протонов и гамма-квантов                                                                                    |
| Г) протонов и нейтронов                                                                                        |
| 23. Дефект массы ядра атома – это разница между массой                                                         |
| А) ядер радиоизотопов                                                                                          |
| Б) ядер изотопов одного элемента                                                                               |
| В) протона и нейтрона                                                                                          |
| Г) ядра расчётной и фактической                                                                                |
| 24. В состав ядра атома входят                                                                                 |
| 25. Дефект массы ядра атома показывает, что часть массы нуклонов                                               |
| А) переходит в энергию их связи в ядре                                                                         |
| Б) переходит в электрическую энергию                                                                           |
| В) затрачивается на их распад                                                                                  |
| Г) передаётся электронам                                                                                       |
| 26. Максимальное количество электронных оболочек у атома                                                       |
| 27. Ближайшая к ядру оболочка обозначается буквой латинского                                                   |
| алфавита.<br>28. Электринеский зарад альфа настины:                                                            |
| 28. Электрический заряд альфа-частицы:<br>A) положительный                                                     |
| AT HOJOWN I CJIDHDIN                                                                                           |
|                                                                                                                |
| Б) отрицательный                                                                                               |
|                                                                                                                |

| 29. Электрический заряд бета-электрона:                                                                                       |  |
|-------------------------------------------------------------------------------------------------------------------------------|--|
| А) положительный                                                                                                              |  |
| Б) отрицательный                                                                                                              |  |
| В) двойной положительный                                                                                                      |  |
| Г) равен нулю                                                                                                                 |  |
| 30. Электрический заряд нейтрона:                                                                                             |  |
| А) положительный                                                                                                              |  |
| Б) отрицательный                                                                                                              |  |
| В) двойной положительный                                                                                                      |  |
| Г) равен нулю                                                                                                                 |  |
| 31. Электрический заряд протона:                                                                                              |  |
| А) положительный                                                                                                              |  |
| Б) отрицательный                                                                                                              |  |
| В) двойной положительный                                                                                                      |  |
| Г) не имеет заряда                                                                                                            |  |
| 32. Электрический заряд нейтрино:                                                                                             |  |
| А) положительный                                                                                                              |  |
| Б) отрицательный                                                                                                              |  |
| В) двойной положительный                                                                                                      |  |
| Г) равен нулю                                                                                                                 |  |
| 33. Электрический заряд антинейтрино:                                                                                         |  |
| А) положительный                                                                                                              |  |
| Б) отрицательный                                                                                                              |  |
| В) двойной положительный                                                                                                      |  |
| Г) равен нулю                                                                                                                 |  |
| 34. Электрический заряд антипротона:                                                                                          |  |
| А) положительный                                                                                                              |  |
| Б) отрицательный                                                                                                              |  |
| В) двойной положительный                                                                                                      |  |
| Г) равен нулю                                                                                                                 |  |
| 35. Электрический заряд рентгено-кванта:                                                                                      |  |
| А) положительный                                                                                                              |  |
| Б) отрицательный                                                                                                              |  |
| В) двойной положительный                                                                                                      |  |
| Г) равен нулю                                                                                                                 |  |
| 36. Электрический заряд гамма-кванта:                                                                                         |  |
| А) положительный                                                                                                              |  |
| Б) отрицательный                                                                                                              |  |
| В) двойной положительный                                                                                                      |  |
| Г) равен нулю                                                                                                                 |  |
| 37. Электрический заряд бета-позитрона:                                                                                       |  |
| А) положительный                                                                                                              |  |
| Б) отрицательный <b>В) — — — — — — — — — — — — — — — — — — —</b>                                                              |  |
| В) двойной положительный                                                                                                      |  |
| Г) равен нулю                                                                                                                 |  |
| 38. Атом, обладающий избытком энергии называется:                                                                             |  |
| A) стабильным<br>Б) возбуждённым                                                                                              |  |
|                                                                                                                               |  |
| В) ионизированным<br>Г) пробуждённым                                                                                          |  |
|                                                                                                                               |  |
| 39. Атомы, с одинаковым порядковым номером и массовым числом, но отличающиеся друг от друга энергетическим уровнем называются |  |
| отличающиеся друг от друга энергетическим уровнем называются                                                                  |  |
| 40. Изотопы – это атомы, ядра которых состоят из одинакового числа                                                            |  |
| —— •<br>А) протонов, но разного числа нейтронов                                                                               |  |
| Б) нейтронов, но разного числа протонов                                                                                       |  |
| В) нейтронов, но разного числа протонов                                                                                       |  |
| $\Gamma$ ) нейтронов и протонов                                                                                               |  |
| 41. Атомы содинаковым массовым числом, но разным порядковым                                                                   |  |
| номером называются                                                                                                            |  |
| 42. Изомеры – это атомы                                                                                                       |  |
| А) с одинаковым порядковым номером и массовым числом, но отличающиеся                                                         |  |
| <br><u> </u>                                                                                                                  |  |

| друг от друга энергетическим уровнем                                                                   |
|--------------------------------------------------------------------------------------------------------|
| Б) обладающие различными видами излучения                                                              |
| В) обладающие различной энергией излучения                                                             |
| Г) с одинаковым порядковым номером и разным массовым числом                                            |
| 43.Изобары – это атомы с                                                                               |
| А) одинаковым массовым числом и с одинаковым порядковым номером                                        |
| Б) различной массой в электрическом и магнитном полях                                                  |
| В) одинаковым массовым числом, но разным порядковым номером                                            |
| Г) одинаковой массой в электрическом и магнитном полях                                                 |
| 44. Атомы, ядра которых состоят из одинакового числа протонов, но                                      |
| разного числа нейтронов называются                                                                     |
| 45. Изотоны – это                                                                                      |
| А) атомы с различным массовым числом, но с одинаковым зарядовым числом                                 |
| Б) атомные ядра различных элементов с равным числом нейтронов                                          |
| В) атомы с различной массой в электрическом поле                                                       |
| Г) атомные ядра различных элементов с равным числом протонов                                           |
| 46. Альфа-лучамибыли названы лучи                                                                      |
| А) отклоняющиеся в электрическом поле к положительному заряду                                          |
| Б) отклоняющиеся в электрическом поле к отрицательному заряду                                          |
| В) не отклоняющиеся в сильном электрическом поле                                                       |
| Г) не отклоняющиеся в магнитном поле                                                                   |
| 47. Величины, характеризующие электромагнитные лучи:                                                   |
| А) скорость движения в вакууме, заряд                                                                  |
| Б) частота колебаний, длина волны                                                                      |
| В) длина волны, скорость движения                                                                      |
| Г) частота колебаний, скорость движения                                                                |
| <b>48. Бета-лучами были названы лучи</b> А) отклоняющиеся в электрическом поле к отрицательному заряду |
| Б) отклоняющиеся в электрическом поле к отрицательному заряду                                          |
| В) не отклоняющиеся в сильном электрическом поле                                                       |
| Г) не отклоняющиеся в сильном магнитном поле                                                           |
| 49. Ионизирующая способность альфа-частиц (п.и.):                                                      |
| A) 250-500 тыс.                                                                                        |
| Б) 50-100                                                                                              |
| B) 5-10                                                                                                |
| Γ) 1-2                                                                                                 |
| 50. Ионизирующая способность бета-частиц (п.и.):                                                       |
| A) 5-10                                                                                                |
| Б) 1-2                                                                                                 |
| В) 250-500 тыс.                                                                                        |
| Γ) 50-100                                                                                              |
| 51. Ионизирующая способность рентгено-квантов (п.и.):                                                  |
| А) 250-500 тыс.                                                                                        |
| Б) 50-100                                                                                              |
| B) 5-10                                                                                                |
| Γ) 1-2                                                                                                 |
| 52. Ионизирующая способность гамма-квантов (п.и.):                                                     |
| А) 250-500 тыс.                                                                                        |
| Б) 1-2                                                                                                 |
| B) 5-10                                                                                                |
| Γ) 50-100                                                                                              |
| 53. Прямую ионизациюмогут вызывать                                                                     |
| А) гамма- и бета-лучи                                                                                  |
| Б) альфа- и бета-излучения                                                                             |
| В) альфа- и рентгеновские лучи                                                                         |
| Г) нейтроны и гамма-излучение                                                                          |
| 54. Проникающая способность в воздухе и биологических тканях альфа-                                    |
| частиц:                                                                                                |
| А) до 10см; несколько десятков микрометров                                                             |
|                                                                                                        |
| Б) до 25 м; до 1 см                                                                                    |
| b) до 25 м; до 1 см В) до нескольких десятков метров; несколько десятков см                            |
|                                                                                                        |





| I |   | Б) скорости распада                                                    |                                   |
|---|---|------------------------------------------------------------------------|-----------------------------------|
| l |   | В) энергии излучения                                                   |                                   |
| l |   | Г) спектру частиц                                                      |                                   |
| l |   | 75. Основная задача дозиметрии, заключается в обнаружении и            |                                   |
| l |   | регистрации доз ионизирующих излучений по                              |                                   |
| l |   | А) числу радиоактивных распадов                                        |                                   |
| l |   | Б) количеству радиоактивного вещества                                  |                                   |
| l |   | В) их проникающей способности                                          |                                   |
| l |   | Г) их энергии                                                          |                                   |
| l |   | 76. К дозиметрическим приборам относятся:                              |                                   |
| l |   | А) РКБ-4-1еМ; Б-3                                                      |                                   |
| l |   | Б) РКБ-4-1еМ; КИД-1                                                    |                                   |
| l |   | В) Белла; СРП-68-01; ДП-100                                            |                                   |
| l |   | Г) СЗБ-04; КИД-1; ИД-1; ИД-11                                          |                                   |
| l |   | 77. К дозиметрическим приборам относятся:                              |                                   |
| l |   | А) ДК-02; ДП-22B, ДП-24                                                |                                   |
| l |   | Б) комплекс «Прогресс»; ИД-1                                           |                                   |
| l |   | В) Белла; СРП-68-01; ДП-100                                            |                                   |
| l |   | Г) ДП-100; Б-3; «Кактус»                                               |                                   |
| ŀ |   | - / · · · · · · · · · · · · · · · · · ·                                | ил годи г                         |
| l |   | 78. Под дозой излучения понимается количество:                         | ИД-1. ОПК-3<br>Осуществляет поиск |
| l |   | А) поглощённых частиц атомами и молекулами облучаемого вещества        | •                                 |
| l |   | Б) поглощённой энергии ионизирующего излучения атомами и молекулами    | современной                       |
| l |   | облучаемого вещества                                                   | актуальной и                      |
| l |   | В) тепловой энергии ионизирующего излучения, воздействующей на атомы и | достоверной                       |
| l |   | молекулы облучаемого вещества                                          | информации о                      |
| l |   | Г) возбуждённых атомов и молекул в облучаемом веществе                 | нормативных                       |
| l |   | 79. Поглощённая доза излучения определяется:                           | правовых актах в                  |
| l |   | А) отношением энергии излучения, поглощённой в некотором объёме        | сфере                             |
| l |   | Б) поглощённой энергией в единице массы облучаемого вещества           | агропромышленного                 |
| l |   | В) как плотность потока частиц                                         | комплекса                         |
| l |   | Г) как ионизация воздуха под воздействием излучения                    | совершенствует,                   |
| l |   | 80. Формула, использующаяся при расчёте мощности поглощённой дозы:     | профессиональную                  |
| l |   | A) $P_{\pi} = \mathcal{I} : t$                                         | деятельность в                    |
| l |   | $F) P_{II} = P_{g} X K$                                                | соответствии с ними               |
| l |   | B) $P_{\text{SKB.}} = P_{\pi} \times KK$                               |                                   |
| l |   | $\Gamma$ ) $P_{\Pi} = P_{\text{SKB.}} X K$                             |                                   |
| l |   | 81.Формула для определения поглощённой дозы:                           |                                   |
| l |   | A) $ \Pi_{\Pi} = \Pi_{\mathfrak{I}} \times KK $                        |                                   |
| l |   | Б) $\mathcal{A}_{\text{п}} = \mathcal{A}_{\text{экв}} \times K$        |                                   |
| l |   | B) $\Pi_{\alpha} = \Pi_{\beta} \times K$                               |                                   |
| l |   | $\Gamma$ ) $\mathcal{A}_{\pi} = P_{\pi} x K$                           |                                   |
| l | 3 | 82.Формула, для определения экспозиционной дозы через поглощённую:     |                                   |
| l |   | A) $ \Pi_{\vartheta} = \Pi_{\Pi} : K $                                 |                                   |
| l |   | Б) $\mathcal{A}_{o} = \mathcal{A}_{okb}$ : К                           |                                   |
| l |   | B) $\coprod_{\mathfrak{I}} = \coprod_{\mathfrak{I}} X K$               |                                   |
| l |   | N                                                                      |                                   |
| l |   | $\Gamma$ ) $ \Pi_{0} = \frac{N}{2,08 \cdot 10^{9} nu} $                |                                   |
| l |   |                                                                        |                                   |
| l |   | 83. Формула, по которой определяют мощность дозы:                      |                                   |
| l |   | A) $\mathcal{A} = P \times t$                                          |                                   |
| l |   | $\mathbf{F}$ $\mathbf{P} = \mathbf{X} \mathbf{X} \mathbf{t}$           |                                   |
| l |   | $\mathbf{B}$ ) $\mathbf{P} = \mathbf{K} : \mathbf{Д}$                  |                                   |
| l |   | $\Gamma$ ) $P = \mathcal{I}$ : $t$                                     |                                   |
|   |   | 84. Формула для определения эквивалентной дозы:                        |                                   |
|   |   | A) $\mathcal{A}_{SKB} = \mathcal{A}_{TI} : KK$                         |                                   |
|   |   | Б)                                                                     |                                   |
|   |   | B) $\mathcal{A}_{\mathfrak{I}} = \mathcal{A}_{\mathfrak{I}} : K$       |                                   |
|   |   | $\Gamma$ ) $\mathcal{A}_{SKB} = \mathcal{A}_{rr} \times KK$            |                                   |
|   |   | 85. Формула для определения уровня радиации на местности:              |                                   |
|   |   | A) $P_0 = \mathcal{A}_0 : t$                                           |                                   |
|   |   | $F_{\text{DKB}} = \mathcal{A}_{\text{B}} : t$                          |                                   |
|   |   | B) $P_{\circ} = \mathcal{A}_{\circ} \times t$                          |                                   |
|   |   | $\Gamma$ ) $P_9 = \mathcal{A}_m : t$                                   |                                   |
|   |   | 86. Лопустимая величина мошности лозы гамма-излучения:                 |                                   |

| А) 15 мкR/ч                                                          |  |
|----------------------------------------------------------------------|--|
| Б) 24 мкR/ч                                                          |  |
| В) 34 мкR/ч                                                          |  |
| Γ) 24 mR/ч                                                           |  |
| 87. Единицы измерения экспозиционной дозы:                           |  |
| А) R; Кл/кг                                                          |  |
| Б) R; Гр                                                             |  |
| В) Кл/кг; рад                                                        |  |
| Г) Зв; Ки                                                            |  |
|                                                                      |  |
| 88. Единицы измерения поглощённой дозы:                              |  |
| Α) R; Γρ                                                             |  |
| Б) рад; Гр                                                           |  |
| В) бэр; Зв                                                           |  |
| Г) Гр; Кл/кг                                                         |  |
| 89. Единицы измерения эквивалентной дозы:                            |  |
| А) рад; Зв                                                           |  |
| Б) Гр; Кл/кг                                                         |  |
| В) бэр; Зв;                                                          |  |
| Γ) 3 <b>B</b> ; Ku                                                   |  |
| 90. Единицы измерения мощности экспозиционной дозы:                  |  |
| А) рад/ч; Гр/ч                                                       |  |
| Б) А/кг; Гр/ч                                                        |  |
| В) бэр/ч; Зв/ч                                                       |  |
| Γ) R/Ψ; A/κΓ                                                         |  |
| 91. Единицы измерения мощности поглощённой дозы:                     |  |
|                                                                      |  |
| A) pag/ч; Гр/ч                                                       |  |
| Б) Гр; Кл/кг<br>В) В ( — A /                                         |  |
| B) R/ч; A/кг                                                         |  |
| Г) бэр/ч; Зв/ч                                                       |  |
| 92. Единицы измерения мощности эквивалентной дозы:                   |  |
| А) R/ч; А/кг                                                         |  |
| Б) бэр/ч; Зв/ч                                                       |  |
| В) рад/ч; Гр/ч                                                       |  |
| Г) Гр; Кл/кг                                                         |  |
| 93. Методы обнаружения ионизирующих излучений, которые               |  |
| используются в дозиметрии:                                           |  |
| А) сцинтилляционный, вентиляционный                                  |  |
| Б) калориметрический, бытовой                                        |  |
| В) ионизационный, сцинтилляционный.                                  |  |
| Г) фотографический, терминальный                                     |  |
| 94. Область вольтамперной характеристики, использующаяся для         |  |
| работы газоразрядных счётчиков – это область                         |  |
|                                                                      |  |
| 95. Для ускорения снятия потенциала в газоразрядные счётчики         |  |
| добавляется                                                          |  |
| 96. Принцип работы газоразрядного счётчика основан на:               |  |
| А) возникновении газового разряда от движущейся нейтральной частицы  |  |
| Б) возникновении тока насыщения                                      |  |
| В) выбивании из стенок электродов вторичных электронов               |  |
| Г) возникновении газового разряда при первичной ионизации газа       |  |
| движущейся заряженной микрочастицей                                  |  |
| 97.Счётная характеристика выражает зависимость скорости счёта (числа |  |
| импульсов в минуту) от:                                              |  |
| А) напряжения, подаваемого на электроды детектора                    |  |
| Б) внутреннего объёма счётчика                                       |  |
| В) состава газа, наполняющего детектор                               |  |
| Г) количества частиц, попавших в детектор                            |  |
|                                                                      |  |
| 98. Основной составной частью дозиметра является                     |  |
| 99.Область вольтамперной характеристики, которая используется для    |  |
| работы пропорциональных счётчиков – это область                      |  |
| А) пропорционального счёта                                           |  |
| Б) ограниченной пропорциональности                                   |  |
| В) Гейгера                                                           |  |
| Г) тока насыщения                                                    |  |

| 100. Пропорциональный счётчик наполняет смесь |     |
|-----------------------------------------------|-----|
|                                               | i . |

По результатам тестирования обучающемуся выставляется оценка зачтено/«отлично», зачтено/«хорошо», зачтено/«удовлетворительно» или не зачтено/ «неудовлетворительно», согласно следующим критериям оценивания

| Шкала                                     | Критерии оценивания<br>(% правильных ответов) |
|-------------------------------------------|-----------------------------------------------|
| Оценка зачтено/5 (отлично)                | 86-100                                        |
| Оценка зачтено/4 (хорошо)                 | 71-85                                         |
| Оценка зачтено/3 (удовлетворительно)      | 60-70                                         |
| Оценка не зачтено/2 (неудовлетворительно) | менее 60                                      |

## ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

| Номер          | Номера листов |       | Основание для  | П                     | Расшифровка | Дата внесения          |           |
|----------------|---------------|-------|----------------|-----------------------|-------------|------------------------|-----------|
| измене-<br>ния | замененных    | новых | аннулированных | внесения<br>изменений | Подпись     | Расшифровка<br>подписи | изменения |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |
|                |               |       |                |                       |             |                        |           |